Suppr超能文献

基于距离、度和特征值的网络结构歧视。

Structural discrimination of networks by using distance, degree and eigenvalue-based measures.

机构信息

UMIT, Institute for Bioinformatics and Translational Research, Hall in Tyrol, Austria.

出版信息

PLoS One. 2012;7(7):e38564. doi: 10.1371/journal.pone.0038564. Epub 2012 Jul 6.

Abstract

In chemistry and computational biology, structural graph descriptors have been proven essential for characterizing the structure of chemical and biological networks. It has also been demonstrated that they are useful to derive empirical models for structure-oriented drug design. However, from a more general (complex network-oriented) point of view, investigating mathematical properties of structural descriptors, such as their uniqueness and structural interpretation, is also important for an in-depth understanding of the underlying methods. In this paper, we emphasize the evaluation of the uniqueness of distance, degree and eigenvalue-based measures. Among these are measures that have been recently investigated extensively. We report numerical results using chemical and exhaustively generated graphs and also investigate correlations between the measures.

摘要

在化学和计算生物学中,结构图描述符已被证明对于描述化学和生物网络的结构至关重要。也已经证明,它们对于推导出面向结构的药物设计的经验模型是有用的。然而,从更一般的(复杂网络导向)角度来看,研究结构描述符的数学性质,例如它们的唯一性和结构解释,对于深入了解基础方法也很重要。在本文中,我们强调评估距离、度和基于特征值的度量的唯一性。其中包括最近广泛研究的度量。我们使用化学和详尽生成的图报告数值结果,还研究了这些度量之间的相关性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5622/3391207/d8287de2a076/pone.0038564.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验