Suppr超能文献

用于肝细胞癌监测的一组具有临床实用价值的标志物对 HCV 肝硬化组织的分子谱分析。

Molecular profiles of HCV cirrhotic tissues derived in a panel of markers with clinical utility for hepatocellular carcinoma surveillance.

机构信息

University of Virginia, Department of Surgery, Transplant Division. Charlottesville, Virginia, United States of America.

出版信息

PLoS One. 2012;7(7):e40275. doi: 10.1371/journal.pone.0040275. Epub 2012 Jul 5.

Abstract

BACKGROUND

Early hepatocellular carcinoma (HCC) detection is difficult because low accuracy of surveillance tests. Genome-wide analyses were performed using HCV-cirrhosis with HCC to identify predictive signatures.

METHODOLOGY/PRINCIPAL FINDINGS: Cirrhotic liver tissue was collected from 107 HCV-infected patients with diagnosis of HCC at pre-transplantation and confirmed in explanted livers. Study groups included: 1) microarray hybridization set (n = 80) including patients without (woHCC = 45) and with (wHCC = 24) HCC, and with incidental HCC (iHCC = 11); 2) independent validation set (n = 27; woHCC = 16, wHCC = 11). Pairwise comparisons were performed using moderated t-test. FDR<1% was considered significant. L(1)-penalized logistic regression model was fit for woHCC and wHCC microarrays, and tested against iHCC. Prediction model genes were validated in independent set by qPCR. The genomic profile was associated with genetic disorders and cancer focused on gene expression, cell cycle and cell death. Molecular profile analysis revealed cell cycle progression and arrest at G2/M, but progressing to mitosis; unregulated DNA damage check-points, and apoptosis. The prediction model included 17 molecules demonstrated 98.6% of accuracy and correctly classified 6 out of 11 undiagnosed iHCC cases. The best model performed even better in the additional independent set.

CONCLUSIONS/SIGNIFICANCES: The molecular analysis of HCV-cirrhotic tissue conducted to a prediction model with good performance and high potential for HCC surveillance.

摘要

背景

由于监测测试的准确性较低,早期肝细胞癌 (HCC) 的检测较为困难。本研究通过对丙型肝炎病毒 (HCV) 相关肝硬化合并 HCC 的全基因组分析,鉴定出预测特征。

方法/主要发现:在移植前收集了 107 名 HCV 感染且诊断为 HCC 的患者的肝硬化肝组织,并在切除的肝组织中得到了证实。研究组包括:1)微阵列杂交组(n=80),包括无 HCC(woHCC=45)和有 HCC(wHCC=24)的患者,以及偶然 HCC(iHCC=11);2)独立验证组(n=27;woHCC=16,wHCC=11)。采用调节 t 检验进行两两比较。FDR<1%被认为具有统计学意义。对 woHCC 和 wHCC 微阵列进行 L(1)-正则化逻辑回归模型拟合,并与 iHCC 进行测试。通过 qPCR 在独立组中验证预测模型基因。该基因组图谱与基因表达、细胞周期和细胞死亡相关的遗传疾病和癌症有关。分子特征分析显示细胞周期在 G2/M 期进展和停滞,但进展到有丝分裂;未调节的 DNA 损伤检查点和细胞凋亡。预测模型包括 17 个分子,准确率为 98.6%,正确分类了 11 个未确诊 iHCC 病例中的 6 个。该最佳模型在另外的独立组中表现更好。

结论/意义:对 HCV 相关肝硬化组织进行的分子分析得出了一个具有良好性能和 HCC 监测高潜力的预测模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd86/3390353/ea263310763b/pone.0040275.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验