Suppr超能文献

线粒体感知缺氧:涉及 S-亚硝化的统一假说。

Sensing hypoxia by mitochondria: a unifying hypothesis involving S-nitrosation.

机构信息

Department of Biology, University of Konstanz , Konstanz, Germany .

出版信息

Antioxid Redox Signal. 2014 Jan 10;20(2):325-38. doi: 10.1089/ars.2012.4788. Epub 2012 Sep 11.

Abstract

SIGNIFICANCE

Sudden hypoxia requires a rapid response in tissues with high energy demand. Mitochondria are rapid sensors for a lack of oxygen, but no consistent mechanism for the sensing process and the subsequent counter-regulation has been described.

RECENT ADVANCES

In the present hypothesis review, we suggest an oxygen-sensing mechanism by mitochondria that is initiated at low oxygen tension by electrons from the respiratory chain, leading to the reduction of intracellular nitrite to nitric oxide ((•)NO) that would subsequently compete with oxygen for binding to cytochrome c oxidase. This allows superoxide ((•)O2(-)) formation in hypoxic areas, leading to S-nitrosation and the inhibition of mitochondrial Krebs cycle enzymes. With more formation of (•)O2(-), peroxynitrite is generated and known to damage the connection between the mitochondrial matrix and the outer membrane.

CRITICAL ISSUES

A fundamental question on a regulatory mechanism is its reversibility. Readmission of oxygen and opening of the mitochondrial KATP-channel would allow electrons from glycerol-3-phosphate to selectively reduce the ubiquinone pool to generate (•)O2(-) at both sides of the inner mitochondrial membrane. On the cytosolic side, superoxide is dismutated and will support H2O2/Fe(2+)-dependent transcription processes and on the mitochondrial matrix side, it could lead to the one-electron reduction and reactivation of S-nitrosated proteins.

FUTURE DIRECTIONS

It remains to be elucidated up to which stage the herein proposed silencing of mitochondria remains reversible and when irreversible changes that ultimately lead to classical reperfusion injury are initiated.

摘要

意义

突然缺氧需要高能量需求的组织迅速做出反应。线粒体是氧气缺乏的快速传感器,但尚未描述用于感知过程和随后的反向调节的一致机制。

最新进展

在本假设综述中,我们提出了一种线粒体的氧气感应机制,该机制在低氧张力下由呼吸链的电子引发,导致细胞内亚硝酸盐还原为一氧化氮((•)NO),随后(•)NO 将与氧气竞争与细胞色素 c 氧化酶结合。这允许在缺氧区域形成超氧化物((•)O2(-)),导致 S-亚硝化和线粒体克雷布斯循环酶的抑制。随着(•)O2(-)的更多形成,过氧亚硝酸盐生成并已知会破坏线粒体基质和外膜之间的连接。

关键问题

关于调节机制的一个基本问题是其可逆性。氧气的重新引入和线粒体 KATP 通道的打开将允许甘油-3-磷酸的电子选择性地还原泛醌池,以在内线粒体膜的两侧产生(•)O2(-)。在线粒体基质侧,超氧化物被歧化,并将支持 H2O2/Fe(2+)-依赖性转录过程,而在线粒体基质侧,它可能导致 S-亚硝化蛋白的单电子还原和再激活。

未来方向

仍有待阐明所提出的线粒体沉默在多大程度上是可逆的,以及何时会启动最终导致经典再灌注损伤的不可逆变化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验