Suppr超能文献

线粒体缺氧中的传感器、递质和靶标——一个缺氧诱导因子传递的故事。

Sensors, transmitters, and targets in mitochondrial oxygen shortage-a hypoxia-inducible factor relay story.

机构信息

Faculty of Medicine, Institute of Biochemistry I/ZAFES, Goethe-University Frankfurt , Frankfurt, Germany .

出版信息

Antioxid Redox Signal. 2014 Jan 10;20(2):339-52. doi: 10.1089/ars.2012.4776. Epub 2012 Sep 6.

Abstract

SIGNIFICANCE

Cells sense and respond to a shortage of oxygen by activating the hypoxia-inducible transcription factors HIF-1 and HIF-2 and evoking adaptive responses.

RECENT ADVANCES

Mitochondria are at the center of a hypoxia sensing and responding relay system.

CRITICAL ISSUES

Under normoxia, reactive oxygen species (ROS) and nitric oxide (NO) are HIF activators. As their individual flux rates determine their diffusion-controlled interaction, predictions how these radicals affect HIF appear context-dependent. Considering that the oxygen requirement for NO formation limits its role in activating HIF to conditions of ambient oxygen tension. Given the central role of mitochondrial complex IV as a NO target, especially under hypoxia, allows inhibition of mitochondrial respiration by NO to spare oxygen thus, raising the threshold for HIF activation. HIF targets seem to configure a feedback-signaling circuit aimed at gradually adjusting mitochondrial function. In hypoxic cancer cells, mitochondria redirect Krebs cycle intermediates to preserve their biosynthetic ability. Persistent HIF activation lowers the entry of electron-delivering compounds into mitochondria to reduce Krebs cycle fueling and β-oxidation, attenuates the expression of electron transport chain components, limits mitochondria biosynthesis, and provokes their removal by autophagy.

FUTURE DIRECTIONS

Mitochondria can be placed central in a hypoxia sensing-hypoxia responding circuit. We need to determine to which extent and how mitochondria contribute to sense hypoxia, explore whether modulating their oxygen-consuming capacity redirects hypoxic responses in in vivo relevant disease conditions, and elucidate how the multiple HIF targets in mitochondria shape conditions of acute versus chronic hypoxia.

摘要

意义

细胞通过激活缺氧诱导转录因子 HIF-1 和 HIF-2 并引发适应性反应来感知和应对缺氧。

最新进展

线粒体是缺氧感应和反应传递系统的中心。

关键问题

在常氧条件下,活性氧(ROS)和一氧化氮(NO)是 HIF 的激活剂。由于它们的个体通量速率决定了它们扩散控制的相互作用,因此这些自由基如何影响 HIF 的预测似乎取决于具体情况。考虑到 NO 形成所需的氧气限制了其在激活 HIF 方面的作用仅限于环境氧气张力条件。鉴于线粒体复合物 IV 作为 NO 靶标的核心作用,尤其是在缺氧条件下,NO 抑制线粒体呼吸可以节省氧气,从而提高 HIF 激活的阈值。HIF 靶标似乎配置了一个反馈信号回路,旨在逐渐调整线粒体功能。在缺氧癌细胞中,线粒体将三羧酸循环中间体重定向以维持其生物合成能力。持续的 HIF 激活会降低电子供体化合物进入线粒体的速度,从而减少三羧酸循环供能和β-氧化,减弱电子传递链组件的表达,限制线粒体生物合成,并通过自噬促使其去除。

未来方向

线粒体可以在缺氧感应-缺氧反应电路中处于中心位置。我们需要确定线粒体在多大程度上以及如何有助于感知缺氧,探索调节其耗氧量是否会在体内相关疾病条件下重新引导缺氧反应,并阐明线粒体中多个 HIF 靶标如何塑造急性与慢性缺氧的条件。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验