Faculty of Medicine, Institute of Biochemistry I/ZAFES, Goethe-University Frankfurt , Frankfurt, Germany .
Antioxid Redox Signal. 2014 Jan 10;20(2):339-52. doi: 10.1089/ars.2012.4776. Epub 2012 Sep 6.
Cells sense and respond to a shortage of oxygen by activating the hypoxia-inducible transcription factors HIF-1 and HIF-2 and evoking adaptive responses.
Mitochondria are at the center of a hypoxia sensing and responding relay system.
Under normoxia, reactive oxygen species (ROS) and nitric oxide (NO) are HIF activators. As their individual flux rates determine their diffusion-controlled interaction, predictions how these radicals affect HIF appear context-dependent. Considering that the oxygen requirement for NO formation limits its role in activating HIF to conditions of ambient oxygen tension. Given the central role of mitochondrial complex IV as a NO target, especially under hypoxia, allows inhibition of mitochondrial respiration by NO to spare oxygen thus, raising the threshold for HIF activation. HIF targets seem to configure a feedback-signaling circuit aimed at gradually adjusting mitochondrial function. In hypoxic cancer cells, mitochondria redirect Krebs cycle intermediates to preserve their biosynthetic ability. Persistent HIF activation lowers the entry of electron-delivering compounds into mitochondria to reduce Krebs cycle fueling and β-oxidation, attenuates the expression of electron transport chain components, limits mitochondria biosynthesis, and provokes their removal by autophagy.
Mitochondria can be placed central in a hypoxia sensing-hypoxia responding circuit. We need to determine to which extent and how mitochondria contribute to sense hypoxia, explore whether modulating their oxygen-consuming capacity redirects hypoxic responses in in vivo relevant disease conditions, and elucidate how the multiple HIF targets in mitochondria shape conditions of acute versus chronic hypoxia.
细胞通过激活缺氧诱导转录因子 HIF-1 和 HIF-2 并引发适应性反应来感知和应对缺氧。
线粒体是缺氧感应和反应传递系统的中心。
在常氧条件下,活性氧(ROS)和一氧化氮(NO)是 HIF 的激活剂。由于它们的个体通量速率决定了它们扩散控制的相互作用,因此这些自由基如何影响 HIF 的预测似乎取决于具体情况。考虑到 NO 形成所需的氧气限制了其在激活 HIF 方面的作用仅限于环境氧气张力条件。鉴于线粒体复合物 IV 作为 NO 靶标的核心作用,尤其是在缺氧条件下,NO 抑制线粒体呼吸可以节省氧气,从而提高 HIF 激活的阈值。HIF 靶标似乎配置了一个反馈信号回路,旨在逐渐调整线粒体功能。在缺氧癌细胞中,线粒体将三羧酸循环中间体重定向以维持其生物合成能力。持续的 HIF 激活会降低电子供体化合物进入线粒体的速度,从而减少三羧酸循环供能和β-氧化,减弱电子传递链组件的表达,限制线粒体生物合成,并通过自噬促使其去除。
线粒体可以在缺氧感应-缺氧反应电路中处于中心位置。我们需要确定线粒体在多大程度上以及如何有助于感知缺氧,探索调节其耗氧量是否会在体内相关疾病条件下重新引导缺氧反应,并阐明线粒体中多个 HIF 靶标如何塑造急性与慢性缺氧的条件。