1 2nd Medical Clinic, Department of Cardiology, Medical Center of the Johannes Gutenberg University , Mainz, Germany .
Antioxid Redox Signal. 2014 Jan 10;20(2):247-66. doi: 10.1089/ars.2012.4953. Epub 2013 Aug 17.
Oxidative stress is involved in the development of cardiovascular disease. There is a growing body of evidence for a crosstalk between different enzymatic sources of oxidative stress. With the present study, we sought to determine the underlying crosstalk mechanisms, the role of the mitochondrial permeability transition pore (mPTP), and its link to endothelial dysfunction.
NADPH oxidase (Nox) activation (oxidative burst and translocation of cytosolic Nox subunits) was observed in response to mitochondrial reactive oxygen species (mtROS) formation in human leukocytes. In vitro, mtROS-induced Nox activation was prevented by inhibitors of the mPTP, protein kinase C, tyrosine kinase cSrc, Nox itself, or an intracellular calcium chelator and was absent in leukocytes with p47phox deficiency (regulates Nox2) or with cyclophilin D deficiency (regulates mPTP). In contrast, the crosstalk in leukocytes was amplified by mitochondrial superoxide dismutase (type 2) (MnSOD(+/-)) deficiency. In vivo, increases in blood pressure, degree of endothelial dysfunction, endothelial nitric oxide synthase (eNOS) dysregulation/uncoupling (e.g., eNOS S-glutathionylation) or Nox activity, p47phox phosphorylation in response to angiotensin-II (AT-II) in vivo treatment, or the aging process were more pronounced in MnSOD(+/-) mice as compared with untreated controls and improved by mPTP inhibition by cyclophilin D deficiency or sanglifehrin A therapy.
These results provide new mechanistic insights into what extent mtROS trigger Nox activation in phagocytes and cardiovascular tissue, leading to endothelial dysfunction.
Our data show that mtROS trigger the activation of phagocytic and cardiovascular NADPH oxidases, which may have fundamental implications for immune cell activation and development of AT-II-induced hypertension.
氧化应激参与心血管疾病的发生发展。越来越多的证据表明,不同的氧化应激酶源之间存在相互作用。本研究旨在确定潜在的相互作用机制、线粒体通透性转换孔(mPTP)的作用及其与内皮功能障碍的关系。
在人白细胞中观察到活性氧物质(mtROS)形成后 NADPH 氧化酶(Nox)的激活(氧化爆发和胞质 Nox 亚基的易位)。在体外,mtROS 诱导的 Nox 激活可被 mPTP、蛋白激酶 C、酪氨酸激酶 cSrc、Nox 本身或细胞内钙螯合剂抑制剂阻断,并且 p47phox 缺乏(调节 Nox2)或 cyclophilin D 缺乏(调节 mPTP)的白细胞中不存在这种激活。相反,白细胞中的这种相互作用被线粒体超氧化物歧化酶(2 型)(MnSOD(+/-))缺乏所放大。在体内,与未处理的对照组相比,MnSOD(+/-)小鼠体内血压升高、内皮功能障碍程度、内皮型一氧化氮合酶(eNOS)失调/解偶联(例如,eNOS S-谷胱甘肽化)或 Nox 活性增加,对血管紧张素-II(AT-II)的反应增强,衰老过程中 p47phox 磷酸化程度增加,MnSOD(+/-)小鼠的这些变化更为明显,并且通过 cyclophilin D 缺乏或桑吉福林 A 治疗抑制 mPTP 可改善这些变化。
这些结果为 mtROS 在吞噬细胞和心血管组织中触发 Nox 激活,导致内皮功能障碍的程度提供了新的机制见解。
我们的数据表明,mtROS 触发吞噬细胞和心血管 NADPH 氧化酶的激活,这可能对免疫细胞激活和 AT-II 诱导的高血压的发展有重要意义。