Department of Earth and Planetary Sciences, McGill University, Montréal, Québec, Canada.
Astrobiology. 2012 Jun;12(6):549-61. doi: 10.1089/ast.2011.0635.
The potential role of clay minerals in the abiotic origin of life has been the subject of ongoing debate for the past several decades. At issue are the clay minerals found in a class of meteorites known as carbonaceous chondrites. These clay minerals are the product of aqueous alteration of anhydrous mineral phases, such as olivine and orthopyroxene, that are often present in the chondrules. Moreover, there is a strong correlation in the occurrence of clay minerals and the presence of polar organic molecules. It has been shown in laboratory experiments at low temperature and ambient pressure that polar organic molecules, such as the oxalate found in meteorites, can catalyze the crystallization of clay minerals. In this study, we show that oxalate is a robust catalyst in the crystallization of saponite, an Al- and Mg-rich, trioctahedral 2:1 layer silicate, from a silicate gel at 60°C and ambient pressure. High-resolution transmission electron microscopy analysis of the saponite treated with octadecylammonium (n(C)=18) cations revealed the presence of 2:1 layer structures that have variable interlayer charge. The crystallization of these differently charged 2:1 layer silicates most likely occurred independently. The fact that 2:1 layer silicates with variable charge formed in the same gel has implications for our understanding of the origin of life, as these 2:1 clay minerals most likely replicate by a mechanism of template-catalyzed polymerization and transmit the charge distribution from layer to layer. If polar organic molecules like oxalate can catalyze the formation of clay-mineral crystals, which in turn promote clay microenvironments and provide abundant adsorption sites for other organic molecules present in solution, the interaction among these adsorbed molecules could lead to the polymerization of more complex organic molecules like RNA from nucleotides on early Earth.
黏土矿物在无生命起源中的潜在作用一直是过去几十年来持续争论的主题。有争议的是一类被称为碳质球粒陨石中的黏土矿物。这些黏土矿物是无水矿物相(如橄榄石和斜方辉石)在水的作用下发生蚀变的产物,而这些无水矿物相通常存在于球粒中。此外,黏土矿物的出现与极性有机分子的存在之间存在很强的相关性。在低温和环境压力下的实验室实验中已经表明,极性有机分子(如陨石中发现的草酸盐)可以催化黏土矿物的结晶。在这项研究中,我们表明草酸盐是一种在 60°C 和环境压力下从硅酸盐凝胶中结晶皂石(一种富含 Al 和 Mg 的三八面体 2:1 层状硅酸盐)的强有力的催化剂。用十八烷基铵(n(C)=18)阳离子处理的皂石的高分辨率透射电子显微镜分析表明存在具有可变层间电荷的 2:1 层结构。这些带不同电荷的 2:1 层状硅酸盐的结晶很可能是独立发生的。这些具有可变电荷的 2:1 层状硅酸盐在同一凝胶中形成的事实对我们理解生命起源具有重要意义,因为这些 2:1 黏土矿物很可能通过模板催化聚合的机制进行复制,并将电荷分布从一层传递到另一层。如果像草酸盐这样的极性有机分子可以催化黏土矿物晶体的形成,而这些晶体反过来又可以促进黏土微观环境并为溶液中存在的其他有机分子提供丰富的吸附位点,那么这些吸附分子之间的相互作用可能导致更复杂的有机分子(如 RNA)从早期地球上的核苷酸聚合。