Centre de Recherches sur les Macromolécules Végétales (CERMAV-CNRS UPR 5301), BP 53 38041 Grenoble CEDEX 9, France.
Centre de Recherches sur les Macromolécules Végétales (CERMAV-CNRS UPR 5301), BP 53 38041 Grenoble CEDEX 9, France.
Plant Sci. 2012 Sep;193-194:48-61. doi: 10.1016/j.plantsci.2012.05.008. Epub 2012 May 18.
In the cell walls of higher plants, cellulose chains are present in crystalline microfibril, with an amorphous part at the surface, or present as amorphous material. To assess the distribution and relative occurrence of the two forms of cellulose in the inflorescence stem of Arabidopsis, we used two carbohydrate-binding modules, CBM3a and CBM28, specific for crystalline and amorphous cellulose, respectively, with immunogold detection in TEM. The binding of the two CBMs displayed specific patterns suggesting that the synthesis of cellulose leads to variable nanodomains of cellulose structures according to cell type. In developing cell walls, only CBM3a bound significantly to the incipient primary walls, indicating that at the onset of its deposition cellulose is in a crystalline structure. As the secondary wall develops, the labeling with both CBMs becomes more intense. The variation of the labeling pattern by CBM3a between transverse and longitudinal sections appeared related to microfibril orientation and differed between fibers and vessels. Although the two CBMs do not allow the description of the complete status of cellulose microstructures, they revealed the dynamics of the deposition of crystalline and amorphous forms of cellulose during wall formation and between cell types adapting cellulose microstructures to the cell function.
在高等植物的细胞壁中,纤维素链存在于结晶微纤维中,表面有非晶部分,或呈非晶态物质存在。为了评估拟南芥花序茎中两种纤维素形式的分布和相对出现情况,我们使用了两种碳水化合物结合模块,CBM3a 和 CBM28,分别特异性结合结晶和非晶纤维素,并用 TEM 的免疫金检测进行检测。两种 CBM 的结合显示出特定的模式,表明纤维素的合成导致根据细胞类型产生可变的纤维素结构纳米域。在发育中的细胞壁中,只有 CBM3a 与初生壁显著结合,表明在其沉积开始时纤维素呈结晶结构。随着次生壁的发育,两种 CBM 的标记变得更加强烈。CBM3a 在横切和纵切面上的标记模式的变化似乎与微纤维取向有关,并且在纤维和导管之间存在差异。尽管这两种 CBM 不能描述纤维素微观结构的完整状态,但它们揭示了在细胞壁形成过程中和细胞类型之间沉积结晶和非晶纤维素形式的动力学,使纤维素微观结构适应细胞功能。