Blake Anthony W, McCartney Lesley, Flint James E, Bolam David N, Boraston Alisdair B, Gilbert Harry J, Knox J Paul
Centre for Plant Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom.
J Biol Chem. 2006 Sep 29;281(39):29321-9. doi: 10.1074/jbc.M605903200. Epub 2006 Jul 14.
Plant cell walls are degraded by glycoside hydrolases that often contain noncatalytic carbohydrate-binding modules (CBMs), which potentiate degradation. There are currently 11 sequence-based cellulose-directed CBM families; however, the biological significance of the structural diversity displayed by these protein modules is uncertain. Here we interrogate the capacity of eight cellulose-binding CBMs to bind to cell walls. These modules target crystalline cellulose (type A) and are located in families 1, 2a, 3a, and 10 (CBM1, CBM2a, CBM3a, and CBM10, respectively); internal regions of amorphous cellulose (type B; CBM4-1, CBM17, CBM28); and the ends of cellulose chains (type C; CBM9-2). Type A CBMs bound particularly effectively to secondary cell walls, although they also recognized primary cell walls. Type A CBM2a and CBM10, derived from the same enzyme, displayed differential binding to cell walls depending upon cell type, tissue, and taxon of origin. Type B CBMs and the type C CBM displayed much weaker binding to cell walls than type A CBMs. CBM17 bound more extensively to cell walls than CBM4-1, even though these type B modules display similar binding to amorphous cellulose in vitro. The thickened primary cell walls of celery collenchyma showed significant binding by some type B modules, indicating that in these walls the cellulose chains do not form highly ordered crystalline structures. Pectate lyase treatment of sections resulted in an increased binding of cellulose-directed CBMs, demonstrating that decloaking cellulose microfibrils of pectic polymers can increase CBM access. The differential recognition of cell walls of diverse origin provides a biological rationale for the diversity of cellulose-directed CBMs that occur in cell wall hydrolases and conversely reveals the variety of cellulose microstructures in primary and secondary cell walls.
植物细胞壁被糖苷水解酶降解,这些酶通常包含非催化性的碳水化合物结合模块(CBMs),可增强降解作用。目前有11个基于序列的纤维素导向CBM家族;然而,这些蛋白质模块所呈现的结构多样性的生物学意义尚不确定。在此,我们研究了8种纤维素结合CBM与细胞壁结合的能力。这些模块靶向结晶纤维素(A型),分别位于第1、2a、3a和10家族(分别为CBM1、CBM2a、CBM3a和CBM10);无定形纤维素的内部区域(B型;CBM4 - 1、CBM17、CBM28);以及纤维素链的末端(C型;CBM9 - 2)。A型CBM与次生细胞壁的结合特别有效,尽管它们也能识别初生细胞壁。源自同一种酶的A型CBM2a和CBM10,根据细胞类型、组织和来源分类群的不同,对细胞壁表现出不同的结合能力。B型CBM和C型CBM与细胞壁的结合比A型CBM弱得多。尽管这些B型模块在体外对无定形纤维素表现出相似的结合能力,但CBM17比CBM4 - 1与细胞壁的结合更广泛。芹菜厚角组织增厚的初生细胞壁显示出一些B型模块的显著结合,表明在这些细胞壁中纤维素链没有形成高度有序的晶体结构。对切片进行果胶裂解酶处理导致纤维素导向CBM的结合增加,这表明去除果胶聚合物的纤维素微纤丝可以增加CBM的可及性。对不同来源细胞壁的差异识别为细胞壁水解酶中出现的纤维素导向CBM的多样性提供了生物学原理,反之也揭示了初生和次生细胞壁中纤维素微观结构的多样性。