Laboratory for Molecular Plant Physiology and Biotechnology, Department of Biology, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium.
Plant Physiol Biochem. 2012 Oct;59:55-62. doi: 10.1016/j.plaphy.2012.06.014. Epub 2012 Jun 28.
Studies addressing the combined impact of multiple climate factors on plant abiotic stress responses are still scarce. We investigated physiological and molecular (antioxidant), responses to water deficit, in grassland-model species, Lolium perenne L. and Medicago lupulina L., under future climate conditions, i.e. elevated CO₂ (+CO₂, +375 ppm) and elevated temperature (+T, +3 °C). Elevated CO₂, but not warming, significantly increased biomass (gDW) in L. perenne, but not in M. lupulina. Photosynthesis (A(sat)) and stomatal conductance (g(s)), were differently affected by climate in each species, L. perenne generally being more sensitive. Elevated CO₂ increased lipid peroxidation levels in M. lupulina, but not in L. perenne, and had no effect on protein oxidation and little effect on antioxidant levels. Drought stress caused severe inhibition in biomass and photosynthesis, most severely in L. perenne, and strongly increased oxidative damage. Elevated CO₂ protected against the drought-induced damage. Decreased activities of APX and POX may indicate lower levels of oxidative challenge (relaxation) at the level of H₂O₂ production. Polyphenols, tocopherols and antioxidant capacity, increased under drought stress, in all climate conditions. Elevated CO₂, increased reduced ascorbate (ASC) and reduced glutathione (GSH), and their redox status, in both species, although to different levels. Changes in activities of key ASC/GSH cycle enzymes, under stress and climate treatments, showed weak correlations with ASC and GSH levels, indicating the complexity of this network. Together this work supports the idea that redox changes are involved in responses to climate changes, in the absence and presence of water-deficit stress.
研究多气候因子对植物非生物胁迫反应的综合影响的研究仍然很少。我们在未来气候条件下(即升高的 CO₂(+CO₂,+375ppm)和升高的温度(+T,+3°C)),对草地模式物种黑麦草(Lolium perenne L.)和紫花苜蓿(Medicago lupulina L.)的水分亏缺生理和分子(抗氧化)反应进行了研究。升高的 CO₂,而不是升温,显著增加了黑麦草的生物量(gDW),但对紫花苜蓿没有影响。光合作用(A(sat))和气孔导度(g(s))在每个物种中受到气候的不同影响,黑麦草通常更敏感。升高的 CO₂增加了紫花苜蓿的脂质过氧化水平,但对黑麦草没有影响,对蛋白质氧化没有影响,对抗氧化剂水平的影响很小。干旱胁迫导致生物量和光合作用严重抑制,在黑麦草中最为严重,并强烈增加氧化损伤。升高的 CO₂可防止干旱引起的损伤。APX 和 POX 的活性降低可能表明 H₂O₂产生水平的氧化挑战(松弛)较低。在所有气候条件下,干旱胁迫下多酚、生育酚和抗氧化能力增加。在两种物种中,升高的 CO₂增加了还原型抗坏血酸(ASC)和还原型谷胱甘肽(GSH)及其氧化还原状态,尽管水平不同。在胁迫和气候处理下,关键 ASC/GSH 循环酶的活性变化与 ASC 和 GSH 水平的相关性较弱,表明该网络的复杂性。总的来说,这项工作支持了这样一种观点,即氧化还原变化参与了对气候变化的反应,无论是否存在水分亏缺胁迫。