School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
J Proteome Res. 2012 Sep 7;11(9):4517-25. doi: 10.1021/pr300257c. Epub 2012 Aug 6.
Large scale mass spectrometry analysis of N-linked glycopeptides is complicated by the inherent complexity of the glycan structures. Here, we evaluate a mass spectrometry approach for the targeted analysis of N-linked glycopeptides in complex mixtures that does not require prior knowledge of the glycan structures or pre-enrichment of the glycopeptides. Despite the complexity of N-glycans, the core of the glycan remains constant, comprising two N-acetylglucosamine and three mannose units. Collision-induced dissociation (CID) mass spectrometry of N-glycopeptides results in the formation of the N-acetylglucosamine (GlcNAc) oxonium ion and a [mannose+GlcNAc] fragment (in addition to other fragments resulting from cleavage within the glycan). In ion-trap CID, those ions are not detected due to the low m/z cutoff; however, they are detected following the beam-type CID known as higher energy collision dissociation (HCD) on the orbitrap mass spectrometer. The presence of these product ions following HCD can be used as triggers for subsequent electron transfer dissociation (ETD) mass spectrometry analysis of the precursor ion. The ETD mass spectrum provides peptide sequence information, which is unobtainable from HCD. A Lys-C digest of ribonuclease B and trypsin digest of immunoglobulin G were separated by ZIC-HILIC liquid chromatography and analyzed by HCD product ion-triggered ETD. The data were analyzed both manually and by search against protein databases by commonly used algorithms. The results show that the product ion-triggered approach shows promise for the field of glycoproteomics and highlight the requirement for more sophisticated data mining tools.
大规模质谱分析 N-连接糖肽非常复杂,这是由于聚糖结构的固有复杂性。在这里,我们评估了一种用于在复杂混合物中靶向分析 N-连接糖肽的质谱方法,该方法不需要预先了解聚糖结构或预先富集糖肽。尽管 N-聚糖结构复杂,但聚糖的核心保持不变,由两个 N-乙酰葡萄糖胺和三个甘露糖单元组成。N-糖肽的碰撞诱导解离 (CID) 质谱导致 N-乙酰葡萄糖胺 (GlcNAc) 氧鎓离子和 [甘露糖+GlcNAc] 片段的形成(除了聚糖内裂解产生的其他片段)。在离子阱 CID 中,由于 m/z 截止值低,这些离子未被检测到;然而,在轨道阱质谱仪上称为更高能量碰撞解离 (HCD) 的束型 CID 之后,它们被检测到。这些产物离子在 HCD 之后的存在可以用作随后对前体离子进行电子转移解离 (ETD) 质谱分析的触发。ETD 质谱提供肽序列信息,这是无法从 HCD 获得的。核糖核酸酶 B 的 Lys-C 消化物和免疫球蛋白 G 的胰蛋白酶消化物通过 ZIC-HILIC 液相色谱分离,并通过 HCD 产物离子触发 ETD 进行分析。数据分别通过手动和通过常用算法搜索蛋白质数据库进行分析。结果表明,产物离子触发方法在糖蛋白质组学领域具有广阔的应用前景,并强调需要更复杂的数据挖掘工具。