Department of Chemistry, Hunter College, The City University of New York, New York, NY 10065, USA.
Ph.D. Programs in Chemistry and Biochemistry, The Graduate Center, The City University of New York, New York, NY 10016, USA.
Phys Chem Chem Phys. 2024 May 15;26(19):14160-14170. doi: 10.1039/d3cp04491b.
Protonated ions of fucose-containing oligosaccharides are prone to undergo internal glycan rearrangement which results in chimeric fragments that obfuscate mass-spectrometric analysis. Lack of accessible tools that would facilitate systematic analysis of glycans in the gas phase limits our understanding of this phenomenon. In this work, we use density functional theory modeling to interpret cryogenic IR spectra of Lewis a and blood group type H1 trisaccharides and to establish whether these trisaccharides undergo the rearrangement during gas-phase analysis. Structurally unconstrained search reveals that none of the parent ions constitute a thermodynamic global minimum. In contrast, predicted collision cross sections and anharmonic IR spectra provide a good match to available experimental data which allowed us to conclude that fucose migration does not occur in these antigens. By comparing the predicted structures with those obtained for Lewis and blood group type H2 epitopes, we demonstrate that the availability of the mobile proton and a large difference in the relative stability of the parent ions and rearrangement products constitute the prerequisites for the rearrangement reaction.
含有岩藻糖的寡糖的质子化离子容易发生内部聚糖重排,导致产生混淆质谱分析的嵌合片段。缺乏有助于系统分析气相中聚糖的可访问工具,限制了我们对这一现象的理解。在这项工作中,我们使用密度泛函理论建模来解释路易斯 a 和血型 H1 三糖的低温红外光谱,并确定这些三糖在气相分析过程中是否会发生重排。结构无约束搜索表明,没有一种母体离子构成热力学全局最小值。相比之下,预测的碰撞截面和非谐红外光谱与可用的实验数据非常吻合,这使我们能够得出结论,即岩藻糖迁移不会发生在这些抗原中。通过将预测结构与路易斯和血型 H2 表位的结构进行比较,我们证明了可移动质子的可用性以及母体离子和重排产物的相对稳定性之间的巨大差异是重排反应的前提条件。