Servicio de Inmunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IP), C/Diego de León 62, E-28006 Madrid, Spain.
J Proteomics. 2012 Sep 18;75(17):5449-62. doi: 10.1016/j.jprot.2012.06.035. Epub 2012 Jul 16.
Adaptation to decreased oxygen availability (hypoxia) is crucial for proper cell function and survival. In metazoans, this is partly achieved through gene transcriptional responses mediated by hypoxia-inducible factors (HIFs). There is abundant evidence that production of reactive oxygen species (ROS) increases during hypoxia, which contributes to the activation of the HIF pathway. In addition to altering the cellular redox balance, leading to oxidative stress, ROS can transduce signals by reversibly modifying the redox state of cysteine residues in certain proteins. Using the "redox fluorescence switch" (RFS), a thiol redox proteomic technique that fluorescently labels reversibly oxidized cysteines, we analyzed endothelial cells subjected to acute hypoxia and subsequent reoxygenation. We observed a general increase in cysteine oxidation during hypoxia, which was reversed by reoxygenation, and two-dimensional electrophoresis revealed the differential oxidation of specific proteins. Using complementary derivatization techniques, we confirmed the modification of individual target proteins and identified specific cysteine residues that were oxidized in hypoxic conditions, thereby overcoming several limitations associated with fluorescence derivatization. These findings provide an important basis for future studies of the role of these modifications in HIF activation and in other acute adaptive responses to hypoxia.
适应氧气供应减少(缺氧)对于细胞的正常功能和存活至关重要。在多细胞生物中,这部分是通过缺氧诱导因子(HIFs)介导的基因转录反应来实现的。有大量证据表明,在缺氧期间活性氧(ROS)的产生增加,这有助于 HIF 途径的激活。除了改变细胞的氧化还原平衡,导致氧化应激之外,ROS 还可以通过可逆修饰某些蛋白质中半胱氨酸残基的氧化还原状态来传递信号。我们使用“氧化还原荧光开关”(RFS),一种可荧光标记可逆氧化半胱氨酸的硫醇氧化蛋白质组学技术,分析了急性缺氧和随后复氧的内皮细胞。我们观察到在缺氧期间半胱氨酸氧化普遍增加,复氧后被逆转,二维电泳显示特定蛋白质的差异氧化。使用互补的衍生化技术,我们证实了个别靶蛋白的修饰,并确定了在缺氧条件下发生氧化的特定半胱氨酸残基,从而克服了与荧光衍生化相关的几个限制。这些发现为进一步研究这些修饰在 HIF 激活以及对缺氧的其他急性适应性反应中的作用提供了重要基础。