Department of Chemistry, State University of New York at Plattsburgh (SUNY Plattsburgh), Hudson Hall 231, 101 Broad Street, Plattsburgh, NY, 12901, USA,
Adv Exp Med Biol. 2014;806:301-17. doi: 10.1007/978-3-319-06068-2_13.
In general protein posttranslation modifications (PTMs) involve the covalent addition of functional groups or molecules to specific amino acid residues in proteins. These modifications include phosphorylation, glycosylation, S-nitrosylation, acetylation, lipidation, among others (Angew Chem Int Ed Engl 44(45):7342-7372, 2005). Although other amino acids can undergo different kinds of oxidative posttranslational modifications (oxPTMs) (Exp Gerontol 36(9):1495-1502, 2001), in this chapter oxPTM will be considered specifically related to Cysteine oxidation, and redox proteomics here is translated as a comprehensive investigation of oxPTMs, in biological systems, using diverse technical approaches. Protein Cysteine residues are not the only amino acid that can be target for oxidative modifications in proteins (Exp Gerontol 36(9):1495-1502, 2001; Biochim Biophys Acta 1814(12):1785-1795, 2011), but certainly it is among the most reactive amino acid (Nature 468(7325):790-795, 2010). Interestingly, it is one of the least abundant amino acid, but it often occurs in the functional sites of proteins (J Mol Biol 404(5):902-916, 2010). In addition, the majority of the Cysteine oxidations are reversible, indicating potential regulatory mechanism of proteins. The global analysis of oxPTMs has been increasingly recognized as an important area of proteomics, because not only maps protein caused by reactive oxygen species (ROS) and reactive nitrogen species (RNS), but also explores protein modulation involving ROS/RNS. Furthermore, the tools and strategies to study this type oxidation are also very abundant and developed, offering high degree of accuracy on the results. As a consequence, the redox proteomics field focuses very much on analyzing Cysteine oxidation in proteins under several experimental conditions and diseases states. Therefore, the identification and localization of oxPTMs within cellular milieu became critical to understand redox regulation of proteins in physiological and pathological conditions, and consequently an important information to develop better strategies for treatment and prevention of diseases associated with oxidative stress.There is a wide range of techniques available to investigate oxPTMs, including gel-based and non-gel-based separation approaches to be combined with sophisticated methods of detection, identification, and quantification of these modifications. The strategies and approaches to study oxPTMs and the respective applications related to physiological and pathological conditions will be discussed in more detail in this chapter.
一般来说,蛋白质翻译后修饰(PTMs)涉及到在蛋白质的特定氨基酸残基上共价添加功能基团或分子。这些修饰包括磷酸化、糖基化、S-亚硝基化、乙酰化、脂化等(Angew Chem Int Ed Engl 44(45):7342-7372, 2005)。尽管其他氨基酸也可以经历不同类型的氧化翻译后修饰(oxPTMs)(Exp Gerontol 36(9):1495-1502, 2001),但在本章中,oxPTM 将被特别视为与半胱氨酸氧化有关,而氧化蛋白质组学则被翻译为在生物系统中使用多种技术方法对 oxPTMs 进行全面研究。蛋白质半胱氨酸残基不是蛋白质中唯一可被氧化修饰的氨基酸(Exp Gerontol 36(9):1495-1502, 2001;Biochim Biophys Acta 1814(12):1785-1795, 2011),但它肯定是最具反应性的氨基酸之一(Nature 468(7325):790-795, 2010)。有趣的是,它是最不丰富的氨基酸之一,但它经常出现在蛋白质的功能位点(J Mol Biol 404(5):902-916, 2010)。此外,大多数半胱氨酸氧化是可逆的,这表明蛋白质存在潜在的调节机制。氧化蛋白质组学的全面分析已日益被视为蛋白质组学的一个重要领域,因为它不仅可以绘制由活性氧(ROS)和活性氮(RNS)引起的蛋白质图谱,还可以探索涉及 ROS/RNS 的蛋白质调节。此外,用于研究这种类型氧化的工具和策略也非常丰富和发达,在结果上具有高度的准确性。因此,氧化蛋白质组学领域非常关注在几种实验条件和疾病状态下分析蛋白质中的半胱氨酸氧化。因此,在细胞环境中鉴定和定位 oxPTMs 对于理解生理和病理条件下蛋白质的氧化调节至关重要,并且是开发与氧化应激相关疾病的治疗和预防的重要信息。有广泛的技术可用于研究 oxPTMs,包括凝胶和非凝胶分离方法,以及用于检测、鉴定和定量这些修饰的复杂方法。本章将更详细地讨论研究 oxPTMs 的策略和方法以及与生理和病理条件相关的应用。