Suppr超能文献

聚焦超声换能器阵列治疗中风的设计:一项模拟研究。

The design of a focused ultrasound transducer array for the treatment of stroke: a simulation study.

机构信息

Department of Imaging Research, Sunnybrook Research Institute, Toronto, Canada.

出版信息

Phys Med Biol. 2012 Aug 7;57(15):4951-68. doi: 10.1088/0031-9155/57/15/4951. Epub 2012 Jul 17.

Abstract

High intensity focused ultrasound (HIFU) is capable of mechanically disintegrating blood clots at high pressures. Safe thrombolysis may require frequencies higher than those currently utilized by transcranial HIFU. Since the attenuation and focal distortion of ultrasound in bone increases at higher frequencies, resulting focal pressures are diminished. This study investigated the feasibility of using transcranial HIFU for the non-invasive treatment of ischemic stroke. The use of large aperture, 1.1-1.5 MHz phased arrays in targeting four clinically relevant vessel locations was simulated. Resulting focal sizes decreased with frequency, producing a maximum -3 dB depth of field and lateral width of 2.0 and 1.2 mm, respectively. Mean focal gains above an order of magnitude were observed in three of four targets and transducer intensities required to achieve thrombolysis were determined. Required transducer element counts are about an order of magnitude higher than what currently exists and so, although technically feasible, new arrays would need to be developed to realize this as a treatment modality for stroke.

摘要

高强度聚焦超声(HIFU)能够在高压力下机械地分解血栓。安全的溶栓可能需要比目前经颅 HIFU 使用的频率更高。由于在更高频率下,超声在骨骼中的衰减和焦点变形增加,因此导致的焦点压力降低。本研究探讨了使用经颅 HIFU 进行非侵入性治疗缺血性中风的可行性。模拟了使用大孔径、1.1-1.5MHz 相控阵靶向四个临床相关血管位置。随着频率的增加,焦点尺寸减小,最大-3dB 景深和横向宽度分别为 2.0 和 1.2mm。在四个目标中的三个中观察到焦点增益超过一个数量级,并且确定了实现溶栓所需的换能器强度。所需的换能器元件数量比目前的数量级高一个数量级,因此,尽管在技术上是可行的,但需要开发新的阵列才能将其作为中风的治疗方式。

相似文献

1
The design of a focused ultrasound transducer array for the treatment of stroke: a simulation study.
Phys Med Biol. 2012 Aug 7;57(15):4951-68. doi: 10.1088/0031-9155/57/15/4951. Epub 2012 Jul 17.
3
Design of a HIFU array for the treatment of deep venous thrombosis: a simulation study.
Phys Med Biol. 2017 Jul 12;62(15):6108-6125. doi: 10.1088/1361-6560/aa71fb.
4
Dual concentric-sectored HIFU transducer with phase-shifted ultrasound excitation for expanded necrotic region: a simulation study.
IEEE Trans Ultrason Ferroelectr Freq Control. 2013 May;60(5):924-31. doi: 10.1109/TUFFC.2013.2649.
5
Phase-Inverted Multifrequency HIFU Transducer for Lesion Expansion: A Simulation Study.
IEEE Trans Ultrason Ferroelectr Freq Control. 2018 Jul;65(7):1125-1132. doi: 10.1109/TUFFC.2018.2830108.
6
Design, fabrication, and characterization of a single-aperture 1.5-MHz/3-MHz dual-frequency HIFU transducer.
IEEE Trans Ultrason Ferroelectr Freq Control. 2013 Jul;60(7):1519-29. doi: 10.1109/TUFFC.2013.2724.
7
Numerical evaluation of the effect of electronically steering a phased array transducer: axially post-focal shifting.
Int J Hyperthermia. 2017 Nov;33(7):758-769. doi: 10.1080/02656736.2017.1309579. Epub 2017 May 15.
8
Adaptive HIFU noise cancellation for simultaneous therapy and imaging using an integrated HIFU/imaging transducer.
Phys Med Biol. 2010 Apr 7;55(7):1889-902. doi: 10.1088/0031-9155/55/7/007. Epub 2010 Mar 12.
10
High intensity focused ultrasound (HIFU) focal spot localization using harmonic motion imaging (HMI).
Phys Med Biol. 2015 Aug 7;60(15):5911-24. doi: 10.1088/0031-9155/60/15/5911. Epub 2015 Jul 17.

引用本文的文献

1
Histotripsy: A novel non-invasive ultrasound technology for precision thrombolysis in acute ischemic stroke management.
Interv Neuroradiol. 2025 Jun 10:15910199251347838. doi: 10.1177/15910199251347838.
2
Improving Sonication Efficiency in Transcranial MR-Guided Focused Ultrasound Treatment: A Patient-Data Simulation Study.
Bioengineering (Basel). 2023 Dec 26;11(1):27. doi: 10.3390/bioengineering11010027.
3
Evaluation of acoustic-thermal simulations of in vivo magnetic resonance guided focused ultrasound ablative therapy.
Int J Hyperthermia. 2024;41(1):2301489. doi: 10.1080/02656736.2023.2301489. Epub 2024 Jan 17.
6
Double-parabolic-reflectors acoustic waveguides for high-power medical ultrasound.
Sci Rep. 2019 Dec 6;9(1):18493. doi: 10.1038/s41598-019-54916-2.
7
Magnetic Resonance-Guided Focused Ultrasound in Neurosurgery: Taking Lessons from the Past to Inform the Future.
J Korean Med Sci. 2018 Oct 4;33(44):e279. doi: 10.3346/jkms.2018.33.e279. eCollection 2018 Oct 29.
8
Numerical Modeling of Ultrasound Propagation in Weakly Heterogeneous Media Using a Mixed-Domain Method.
IEEE Trans Ultrason Ferroelectr Freq Control. 2018 Jul;65(7):1258-1267. doi: 10.1109/TUFFC.2018.2828316.
9
Effect of Frequency and Focal Spacing on Transcranial Histotripsy Clot Liquefaction, Using Electronic Focal Steering.
Ultrasound Med Biol. 2017 Oct;43(10):2302-2317. doi: 10.1016/j.ultrasmedbio.2017.06.010. Epub 2017 Jul 14.

本文引用的文献

1
In vitro and in vivo high-intensity focused ultrasound thrombolysis.
Invest Radiol. 2012 Apr;47(4):217-25. doi: 10.1097/RLI.0b013e31823cc75c.
3
4
Noninvasive treatment of deep venous thrombosis using pulsed ultrasound cavitation therapy (histotripsy) in a porcine model.
J Vasc Interv Radiol. 2011 Mar;22(3):369-77. doi: 10.1016/j.jvir.2010.10.007. Epub 2010 Dec 30.
5
Heart disease and stroke statistics--2011 update: a report from the American Heart Association.
Circulation. 2011 Feb 1;123(4):e18-e209. doi: 10.1161/CIR.0b013e3182009701. Epub 2010 Dec 15.
7
Transcranial magnetic resonance imaging- guided focused ultrasound surgery of brain tumors: initial findings in 3 patients.
Neurosurgery. 2010 Feb;66(2):323-32; discussion 332. doi: 10.1227/01.NEU.0000360379.95800.2F.
9
High-intensity focused ultrasound for noninvasive functional neurosurgery.
Ann Neurol. 2009 Dec;66(6):858-61. doi: 10.1002/ana.21801.
10
Noninvasive thrombolysis using pulsed ultrasound cavitation therapy - histotripsy.
Ultrasound Med Biol. 2009 Dec;35(12):1982-94. doi: 10.1016/j.ultrasmedbio.2009.07.001. Epub 2009 Oct 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验