Suppr超能文献

风险模型科学。

The science of risk models.

机构信息

Department of Medical Statistics, London School of Hygiene and Tropical Medicine, Keppel Street, London, UK.

出版信息

Eur J Prev Cardiol. 2012 Aug;19(2 Suppl):7-13. doi: 10.1177/2047487312448995.

Abstract

An individual's overall cardiovascular risk should guide appropriate therapy and patient management. Several risk assessment scores are available; however, further development of risk algorithms is necessary to account for changes in available treatments and patient lifestyles, to make use of emerging risk factors and more accurate methods for measuring outcomes, and to provide more targeted measurement of risk for different patient subpopulations. When developing a risk model it is important to clearly define the outcome that the risk will predict, the period of follow up, the patient population, and the predictors to be used and how they will be combined. An appropriate statistical model is specified with the aim of finding the weighted combination of the candidate risk factors that best predicts the disease outcome. Stepwise regression is used to systematically search through candidate risk factors to produce a final model with an acceptable number of highly relevant variables. Possible non-linear effects of continuous variables and interactions between variables must be considered. However, the selection of variables requires not just statistical criteria but also clinical, biological and epidemiological judgement. In general, relatively simple, clinically reasonable and easy-to-use models that can be generalized to other settings are preferred to complex mathematical models that fit the sample data perfectly. There is a permanent need for updating cardiovascular risk scores to reflect advances in our clinical knowledge over time and changes in population risk. Development of a risk model requires both statistical expertise and a sound knowledge of the clinical and epidemiological aspects of cardiovascular disease.

摘要

个体的整体心血管风险应指导适当的治疗和患者管理。有几种风险评估评分可用;然而,需要进一步开发风险算法,以考虑到可用治疗方法和患者生活方式的变化,利用新兴风险因素和更准确的方法来衡量结果,并为不同的患者亚群更有针对性地衡量风险。在开发风险模型时,重要的是要清楚地定义风险将预测的结果、随访期、患者人群以及要使用的预测因子以及如何组合它们。指定适当的统计模型的目的是找到最佳预测疾病结果的候选风险因素的加权组合。逐步回归用于系统地搜索候选风险因素,以生成一个具有可接受数量的高度相关变量的最终模型。必须考虑连续变量的可能非线性效应和变量之间的相互作用。然而,变量的选择不仅需要统计标准,还需要临床、生物学和流行病学判断。一般来说,与适合样本数据的复杂数学模型相比,人们更喜欢相对简单、临床合理且易于使用的、可以推广到其他环境的模型。随着时间的推移,需要不断更新心血管风险评分,以反映我们临床知识的进步和人群风险的变化。风险模型的开发既需要统计学专业知识,也需要对心血管疾病的临床和流行病学方面有深入的了解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验