Suppr超能文献

基于模型的膝关节刚度估计。

Model-based estimation of knee stiffness.

机构信息

Sensory-Motor Systems Laboratory, ETH Zurich, Zurich, Switzerland.

出版信息

IEEE Trans Biomed Eng. 2012 Sep;59(9):2604-12. doi: 10.1109/TBME.2012.2207895. Epub 2012 Jul 11.

Abstract

During natural locomotion, the stiffness of the human knee is modulated continuously and subconsciously according to the demands of activity and terrain. Given modern actuator technology, powered transfemoral prostheses could theoretically provide a similar degree of sophistication and function. However, experimentally quantifying knee stiffness modulation during natural gait is challenging. Alternatively, joint stiffness could be estimated in a less disruptive manner using electromyography (EMG) combined with kinetic and kinematic measurements to estimate muscle force, together with models that relate muscle force to stiffness. Here we present the first step in that process, where we develop such an approach and evaluate it in isometric conditions, where experimental measurements are more feasible. Our EMG-guided modeling approach allows us to consider conditions with antagonistic muscle activation, a phenomenon commonly observed in physiological gait. Our validation shows that model-based estimates of knee joint stiffness coincide well with experimental data obtained using conventional perturbation techniques. We conclude that knee stiffness can be accurately estimated in isometric conditions without applying perturbations, which presents an important step toward our ultimate goal of quantifying knee stiffness during gait.

摘要

在自然运动中,人类膝关节的刚度会根据活动和地形的需求不断进行潜意识的调节。考虑到现代执行器技术,动力仿生膝关节假肢理论上可以提供类似的复杂程度和功能。然而,在实验中量化自然步态中的膝关节刚度调节具有挑战性。或者,可以使用肌电图 (EMG) 结合运动学和运动学测量来估计肌肉力量,同时使用将肌肉力量与刚度相关联的模型,以不那么具干扰性的方式来估计关节刚度。在这里,我们介绍了该过程的第一步,即开发这种方法并在等长条件下对其进行评估,因为在等长条件下进行实验测量更为可行。我们的 EMG 引导建模方法使我们能够考虑到存在拮抗肌激活的情况,这是生理步态中常见的现象。我们的验证表明,基于模型的膝关节刚度估计与使用传统扰动技术获得的实验数据非常吻合。我们得出结论,在不施加扰动的等长条件下可以准确估计膝关节刚度,这是朝着我们在步态中量化膝关节刚度的最终目标迈出的重要一步。

相似文献

1
Model-based estimation of knee stiffness.基于模型的膝关节刚度估计。
IEEE Trans Biomed Eng. 2012 Sep;59(9):2604-12. doi: 10.1109/TBME.2012.2207895. Epub 2012 Jul 11.
2
Model-based estimation of active knee stiffness.基于模型的主动膝关节僵硬度估计。
IEEE Int Conf Rehabil Robot. 2011;2011:5975474. doi: 10.1109/ICORR.2011.5975474.
3
Knee stiffness estimation in physiological gait.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:1607-10. doi: 10.1109/EMBC.2014.6943912.
5
Modeling the human knee for assistive technologies.为辅助技术建立人体膝关节模型。
IEEE Trans Biomed Eng. 2012 Sep;59(9):2642-9. doi: 10.1109/TBME.2012.2208746.
6
Observer-Based Human Knee Stiffness Estimation.基于观测器的人体膝关节刚度估计
IEEE Trans Biomed Eng. 2017 May;64(5):1033-1044. doi: 10.1109/TBME.2016.2587841. Epub 2016 Jul 7.
9
Comparison of electromyography and joint moment as indicators of co-contraction.肌电图与关节力矩对比分析肌肉协同收缩。
J Electromyogr Kinesiol. 2012 Aug;22(4):607-11. doi: 10.1016/j.jelekin.2012.02.001. Epub 2012 Feb 29.

引用本文的文献

2
6
Simultaneous Quantification of Ankle, Muscle, and Tendon Impedance in Humans.人体踝关节、肌肉和肌腱阻抗的同步量化。
IEEE Trans Biomed Eng. 2022 Dec;69(12):3657-3666. doi: 10.1109/TBME.2022.3175646. Epub 2022 Nov 23.
7
Bio-Inspired Knee Joint: Trends in the Hardware Systems Development.仿生膝关节:硬件系统发展趋势
Front Robot AI. 2021 Sep 1;8:613574. doi: 10.3389/frobt.2021.613574. eCollection 2021.

本文引用的文献

1
Model-based estimation of active knee stiffness.基于模型的主动膝关节僵硬度估计。
IEEE Int Conf Rehabil Robot. 2011;2011:5975474. doi: 10.1109/ICORR.2011.5975474.
3
A model of the lower limb for analysis of human movement.下肢运动分析模型。
Ann Biomed Eng. 2010 Feb;38(2):269-79. doi: 10.1007/s10439-009-9852-5. Epub 2009 Dec 3.
4
Design and Control of a Powered Transfemoral Prosthesis.动力型经股骨假肢的设计与控制
Int J Rob Res. 2008 Feb 1;27(2):263-273. doi: 10.1177/0278364907084588.
7
Modeling short-range stiffness of feline lower hindlimb muscles.猫科动物后肢下部肌肉短程刚度的建模
J Biomech. 2008;41(9):1945-52. doi: 10.1016/j.jbiomech.2008.03.024. Epub 2008 May 21.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验