Inria, Rocquencourt, B.P.105, 78153, Le Chesnay, France.
Biomech Model Mechanobiol. 2013 Jun;12(3):475-96. doi: 10.1007/s10237-012-0418-3. Epub 2012 Jul 17.
Viscoelastic support has been previously established as a valuable modeling ingredient to represent the effect of surrounding tissues and organs in a fluid-structure vascular model. In this paper, we propose a complete methodological chain for the identification of the corresponding boundary support parameters, using patient image data. We consider distance maps of model to image contours as the discrepancy driving the data assimilation approach, which then relies on a combination of (1) state estimation based on the so-called SDF filtering method, designed within the realm of Luenberger observers and well adapted to handling measurements provided by image sequences, and (2) parameter estimation based on a reduced-order UKF filtering method which has no need for tangent operator computations and features natural parallelism to a high degree. Implementation issues are discussed, and we show that the resulting computational effectiveness of the complete estimation chain is comparable to that of a direct simulation. Furthermore, we demonstrate the use of this framework in a realistic application case involving hemodynamics in the thoracic aorta. The estimation of the boundary support parameters proves successful, in particular in that direct modeling simulations based on the estimated parameters are more accurate than with a previous manual expert calibration. This paves the way for complete patient-specific fluid-structure vascular modeling in which all types of available measurements could be used to estimate additional uncertain parameters of biophysical and clinical relevance.
黏弹性支撑已被证明是一种有价值的建模成分,可以在流固耦合血管模型中表示周围组织和器官的影响。在本文中,我们提出了一种使用患者图像数据来识别相应边界支撑参数的完整方法链。我们将模型到图像轮廓的距离图作为数据同化方法的差异驱动因素,该方法依赖于(1)基于所谓 SDF 滤波方法的状态估计,该方法设计在 Luenberger 观测器的范围内,非常适合处理图像序列提供的测量值,以及(2)基于降阶 UKF 滤波方法的参数估计,该方法不需要切线算子计算,并且具有高度的自然并行性。讨论了实施问题,我们表明完整估计链的计算效率与直接模拟相当。此外,我们还展示了该框架在涉及胸主动脉血液动力学的实际应用案例中的使用。边界支撑参数的估计非常成功,特别是基于估计参数的直接建模模拟比以前的手动专家校准更准确。这为完全基于患者的流固耦合血管建模铺平了道路,在这种建模中,可以使用所有类型的可用测量值来估计具有生物物理和临床相关性的其他不确定参数。