Suppr超能文献

脊椎动物原口的发育与演化。

Development and evolution of the vertebrate primary mouth.

机构信息

Department of Zoology, Charles University in Prague, Prague, Czech Republic.

出版信息

J Anat. 2013 Jan;222(1):79-99. doi: 10.1111/j.1469-7580.2012.01540.x. Epub 2012 Jul 16.

Abstract

The vertebrate oral region represents a key interface between outer and inner environments, and its structural and functional design is among the limiting factors for survival of its owners. Both formation of the respective oral opening (primary mouth) and establishment of the food-processing apparatus (secondary mouth) require interplay between several embryonic tissues and complex embryonic rearrangements. Although many aspects of the secondary mouth formation, including development of the jaws, teeth or taste buds, are known in considerable detail, general knowledge about primary mouth formation is regrettably low. In this paper, primary mouth formation is reviewed from a comparative point of view in order to reveal its underestimated morphogenetic diversity among, and also within, particular vertebrate clades. In general, three main developmental modes were identified. The most common is characterized by primary mouth formation via a deeply invaginated ectodermal stomodeum and subsequent rupture of the bilaminar oral membrane. However, in salamander, lungfish and also in some frog species, the mouth develops alternatively via stomodeal collar formation contributed both by the ecto- and endoderm. In ray-finned fishes, on the other hand, the mouth forms via an ectoderm wedge and later horizontal detachment of the initially compressed oral epithelia with probably a mixed germ-layer derivation. A very intriguing situation can be seen in agnathan fishes: whereas lampreys develop their primary mouth in a manner similar to the most common gnathostome pattern, hagfishes seem to undergo a unique oropharyngeal morphogenesis when compared with other vertebrates. In discussing the early formative embryonic correlates of primary mouth formation likely to be responsible for evolutionary-developmental modifications of this area, we stress an essential role of four factors: first, positioning and amount of yolk tissue; closely related to, second, endoderm formation during gastrulation, which initiates the process and constrains possible evolutionary changes within this area; third, incipient structure of the stomodeal primordium at the anterior neural plate border, where the ectoderm component of the prospective primary mouth is formed; and fourth, the prime role of Pitx genes for establishment and later morphogenesis of oral region both in vertebrates and non-vertebrate chordates.

摘要

脊椎动物的口腔区域代表了内外环境之间的关键界面,其结构和功能设计是其所有者生存的限制因素之一。各自口腔开口(初级口)的形成和食物处理器官(次级口)的建立都需要几个胚胎组织之间的相互作用和复杂的胚胎重排。尽管次级口形成的许多方面,包括颌骨、牙齿或味蕾的发育,都有相当详细的了解,但对初级口形成的一般认识却令人遗憾地很低。本文从比较的角度回顾了初级口的形成,以揭示其在特定脊椎动物类群中被低估的形态发生多样性。总的来说,确定了三种主要的发育模式。最常见的模式是通过一个深深的内陷的外胚层口道和随后的双层口腔膜破裂来形成初级口。然而,在蝾螈、肺鱼,以及一些青蛙物种中,嘴巴通过外胚层和内胚层共同贡献的口道领形成而替代性地发育。另一方面,在硬骨鱼类中,嘴巴通过一个外胚层楔形物形成,然后最初被压缩的口腔上皮层水平分离,可能具有混合的胚层来源。在无颌鱼类中可以看到一个非常有趣的情况:尽管七鳃鳗的初级口以类似于最常见的颌骨模式的方式发育,但与其他脊椎动物相比,盲鳗似乎经历了一种独特的口咽形态发生。在讨论可能对该区域的进化发育变化负责的初级口形成的早期胚胎形态发生相关因素时,我们强调了四个因素的重要作用:第一,卵黄组织的位置和数量;与第二,原肠胚形成期间的内胚层形成密切相关,这启动了这个过程,并限制了这个区域内可能发生的进化变化;第三,前神经板边界处口道原基的初始结构,外胚层成分的未来初级口在这里形成;第四,Pitx 基因在脊椎动物和非脊椎动物脊索动物中对口腔区域的建立和后来的形态发生都起着主要作用。

相似文献

1
Development and evolution of the vertebrate primary mouth.
J Anat. 2013 Jan;222(1):79-99. doi: 10.1111/j.1469-7580.2012.01540.x. Epub 2012 Jul 16.
2
Pre-oral gut contributes to facial structures in non-teleost fishes.
Nature. 2017 Jul 13;547(7662):209-212. doi: 10.1038/nature23008. Epub 2017 Jul 5.
3
Mouth development.
Wiley Interdiscip Rev Dev Biol. 2017 Sep;6(5). doi: 10.1002/wdev.275. Epub 2017 May 17.
4
Evolutionary modification of mouth position in deuterostomes.
Semin Cell Dev Biol. 2007 Aug;18(4):502-11. doi: 10.1016/j.semcdb.2007.06.002. Epub 2007 Jun 15.
6
Development of the primary mouth in Xenopus laevis.
Dev Biol. 2006 Jul 15;295(2):700-13. doi: 10.1016/j.ydbio.2006.03.054. Epub 2006 Apr 6.
7
Dual epithelial origin of vertebrate oral teeth.
Nature. 2008 Oct 9;455(7214):795-8. doi: 10.1038/nature07304. Epub 2008 Sep 14.
8
The conundrum of pharyngeal teeth origin: the role of germ layers, pouches, and gill slits.
Biol Rev Camb Philos Soc. 2022 Feb;97(1):414-447. doi: 10.1111/brv.12805. Epub 2021 Oct 13.
9
The evolutionary history of vertebrate cranial placodes II. Evolution of ectodermal patterning.
Dev Biol. 2014 May 1;389(1):98-119. doi: 10.1016/j.ydbio.2014.01.019. Epub 2014 Feb 1.
10
Endodermal/ectodermal interfaces during pharyngeal segmentation in vertebrates.
J Anat. 2014 Nov;225(5):479-91. doi: 10.1111/joa.12234. Epub 2014 Sep 8.

引用本文的文献

1
The metamorphic transition of the frog mouth: from tadpole keratinized mouthparts to adult teeth.
R Soc Open Sci. 2025 Sep 3;12(9):251196. doi: 10.1098/rsos.251196. eCollection 2025 Sep.
2
Periderm fate and independence of tooth formation are conserved across osteichthyans.
Evodevo. 2024 Oct 3;15(1):13. doi: 10.1186/s13227-024-00232-4.
4
Biogeographical Impacts of Dental, Oral, and Craniofacial Microbial Reservoirs.
J Dent Res. 2023 Nov;102(12):1303-1314. doi: 10.1177/00220345231191115. Epub 2023 Sep 20.
5
Pre-mandibular pharyngeal pouches in early non-teleost fish embryos.
Proc Biol Sci. 2023 Sep 13;290(2006):20231158. doi: 10.1098/rspb.2023.1158.
6
Disruption of causes craniofacial anomalies in developing zebrafish.
Front Cell Dev Biol. 2023 Aug 16;11:1141893. doi: 10.3389/fcell.2023.1141893. eCollection 2023.
8
Won't You be My Neighbor: How Epithelial Cells Connect Together to Build Global Tissue Polarity.
Front Cell Dev Biol. 2022 Jun 21;10:887107. doi: 10.3389/fcell.2022.887107. eCollection 2022.
9
Association of TP53 and CDKN2A Mutation Profile with Tumor Mutation Burden in Head and Neck Cancer.
Clin Cancer Res. 2022 May 2;28(9):1925-1937. doi: 10.1158/1078-0432.CCR-21-4316.
10
The First Report of a Missense Variant in Causing Non-Syndromic Tooth Agenesis in a Consanguineous Pakistani Family.
Front Genet. 2022 Jan 25;12:782653. doi: 10.3389/fgene.2021.782653. eCollection 2021.

本文引用的文献

1
[Not Available].
Wilhelm Roux Arch Entwickl Mech Org. 1949 Sep;143(5-6):365-395. doi: 10.1007/BF00576920.
2
[Not Available].
Wilhelm Roux Arch Entwickl Mech Org. 1933 Sep;129(3):445-501. doi: 10.1007/BF00573505.
3
[Not Available].
Wilhelm Roux Arch Entwickl Mech Org. 1933 Jun;130(2):131-186. doi: 10.1007/BF01380894.
4
Development of the hypophysis of the arctic lamprey, Lampetra japonica.
Fish Physiol Biochem. 1990 Sep;8(5):355-64. doi: 10.1007/BF00003367.
5
Specification and regionalisation of the neural plate border.
Eur J Neurosci. 2011 Nov;34(10):1516-28. doi: 10.1111/j.1460-9568.2011.07871.x.
6
Origin and segregation of cranial placodes in Xenopus laevis.
Dev Biol. 2011 Dec 15;360(2):257-75. doi: 10.1016/j.ydbio.2011.09.024. Epub 2011 Oct 2.
8
How old genes make a new head: redeployment of Six and Eya genes during the evolution of vertebrate cranial placodes.
Integr Comp Biol. 2007 Sep;47(3):343-59. doi: 10.1093/icb/icm031. Epub 2007 May 22.
9
Identification of early requirements for preplacodal ectoderm and sensory organ development.
PLoS Genet. 2010 Sep 23;6(9):e1001133. doi: 10.1371/journal.pgen.1001133.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验