文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

咽齿起源之谜:胚层、囊和鳃裂的作用。

The conundrum of pharyngeal teeth origin: the role of germ layers, pouches, and gill slits.

机构信息

Research Group Evolutionary Developmental Biology, Biology Department, Ghent University, K.L. Ledeganckstraat 35, Ghent, B-9000, Belgium.

Department of Zoology, Faculty of Science, Charles University, Vinicna 7, Prague, 128 44, Czech Republic.

出版信息

Biol Rev Camb Philos Soc. 2022 Feb;97(1):414-447. doi: 10.1111/brv.12805. Epub 2021 Oct 13.


DOI:10.1111/brv.12805
PMID:34647411
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9293187/
Abstract

There are several competing hypotheses on tooth origins, with discussions eventually settling in favour of an 'outside-in' scenario, in which internal odontodes (teeth) derived from external odontodes (skin denticles) in jawless vertebrates. The evolution of oral teeth from skin denticles can be intuitively understood from their location at the mouth entrance. However, the basal condition for jawed vertebrates is arguably to possess teeth distributed throughout the oropharynx (i.e. oral and pharyngeal teeth). As skin denticle development requires the presence of ectoderm-derived epithelium and of mesenchyme, it remains to be answered how odontode-forming skin epithelium, or its competence, were 'transferred' deep into the endoderm-covered oropharynx. The 'modified outside-in' hypothesis for tooth origins proposed that this transfer was accomplished through displacement of odontogenic epithelium, that is ectoderm, not only through the mouth, but also via any opening (e.g. gill slits) that connects the ectoderm to the epithelial lining of the pharynx (endoderm). This review explores from an evolutionary and from a developmental perspective whether ectoderm plays a role in (pharyngeal) tooth and denticle formation. Historic and recent studies on tooth development show that the odontogenic epithelium (enamel organ) of oral or pharyngeal teeth can be of ectodermal, endodermal, or of mixed ecto-endodermal origin. Comprehensive data are, however, only available for a few taxa. Interestingly, in these taxa, the enamel organ always develops from the basal layer of a stratified epithelium that is at least bilayered. In zebrafish, a miniaturised teleost that only retains pharyngeal teeth, an epithelial surface layer with ectoderm-like characters is required to initiate the formation of an enamel organ from the basal, endodermal epithelium. In urodele amphibians, the bilayered epithelium is endodermal, but the surface layer acquires ectodermal characters, here termed 'epidermalised endoderm'. Furthermore, ectoderm-endoderm contacts at pouch-cleft boundaries (i.e. the prospective gill slits) are important for pharyngeal tooth initiation, even if the influx of ectoderm via these routes is limited. A balance between sonic hedgehog and retinoic acid signalling could operate to assign tooth-initiating competence to the endoderm at the level of any particular pouch. In summary, three characters are identified as being required for pharyngeal tooth formation: (i) pouch-cleft contact, (ii) a stratified epithelium, of which (iii) the apical layer adopts ectodermal features. These characters delimit the area in which teeth can form, yet cannot alone explain the distribution of teeth over the different pharyngeal arches. The review concludes with a hypothetical evolutionary scenario regarding the persisting influence of ectoderm on pharyngeal tooth formation. Studies on basal osteichthyans with less-specialised types of early embryonic development will provide a crucial test for the potential role of ectoderm in pharyngeal tooth formation and for the 'modified outside-in' hypothesis of tooth origins.

摘要

关于牙齿起源有几种相互竞争的假说,最终的讨论倾向于一种“从外向内”的情景,即在无颌脊椎动物中,内部的牙原基(牙齿)来源于外部的牙原基(皮肤齿)。从口腔入口处的位置,可以直观地理解口腔牙齿从皮肤齿的进化。然而,有颌脊椎动物的基本条件可以说是拥有分布在口咽(即口腔和咽齿)的牙齿。由于皮肤齿的发育需要外胚层衍生的上皮和间充质,因此仍然需要回答的是,牙原基形成的皮肤上皮,或其潜能,是如何“转移”到被内胚层覆盖的口咽深处的。提出的牙齿起源的“改良从外向内”假说认为,这种转移是通过牙原基上皮(即外胚层)的位移来实现的,不仅通过口腔,而且还通过将外胚层连接到咽上皮(内胚层)的任何开口(例如鳃裂)来实现。本综述从进化和发育的角度探讨了外胚层是否在(咽)牙齿和齿的形成中发挥作用。关于牙齿发育的历史和近期研究表明,口腔或咽齿的牙原基上皮(釉质器官)可以来自外胚层、内胚层或混合的外胚层-内胚层。然而,只有少数分类群有全面的数据。有趣的是,在这些分类群中,釉质器官总是从至少双层的分层上皮的基底层发育而来。在斑马鱼中,一种小型化的硬骨鱼,只保留咽齿,需要具有外胚层特征的上皮表面层来启动从基底、内胚层上皮发育成釉质器官。在有尾两栖动物中,双层上皮是内胚层的,但表面层获得了外胚层特征,这里称为“表皮化内胚层”。此外,囊胚裂边界(即未来的鳃裂)处的外胚层-内胚层接触对于咽齿的起始很重要,即使通过这些途径的外胚层流入是有限的。 sonic hedgehog 和视黄酸信号之间的平衡可能会在外胚层水平上为特定的任何一个囊分配牙齿起始的潜能。总之,有三个特征被确定为咽齿形成所必需的:(i)囊胚裂接触,(ii)分层上皮,其中(iii)顶端层采用外胚层特征。这些特征限定了牙齿可以形成的区域,但不能单独解释牙齿在不同咽弓上的分布。综述以关于外胚层对咽齿形成持续影响的假设性进化情景结束。对具有早期胚胎发育不太专门化类型的基干肉鳍鱼类的研究将为外胚层在咽齿形成中的潜在作用以及牙齿起源的“改良从外向内”假说提供关键的检验。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28cb/9293187/d49423d46c9f/BRV-97-414-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28cb/9293187/59c8332ac8e4/BRV-97-414-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28cb/9293187/9155b1053792/BRV-97-414-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28cb/9293187/c28e8620fd1d/BRV-97-414-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28cb/9293187/58ec310e12bf/BRV-97-414-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28cb/9293187/cee081b9b6f9/BRV-97-414-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28cb/9293187/b3fdec2d01f9/BRV-97-414-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28cb/9293187/77c7710105d0/BRV-97-414-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28cb/9293187/c601d9b69c7c/BRV-97-414-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28cb/9293187/d1d159c1bd36/BRV-97-414-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28cb/9293187/7b509af155c0/BRV-97-414-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28cb/9293187/d49423d46c9f/BRV-97-414-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28cb/9293187/59c8332ac8e4/BRV-97-414-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28cb/9293187/9155b1053792/BRV-97-414-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28cb/9293187/c28e8620fd1d/BRV-97-414-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28cb/9293187/58ec310e12bf/BRV-97-414-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28cb/9293187/cee081b9b6f9/BRV-97-414-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28cb/9293187/b3fdec2d01f9/BRV-97-414-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28cb/9293187/77c7710105d0/BRV-97-414-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28cb/9293187/c601d9b69c7c/BRV-97-414-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28cb/9293187/d1d159c1bd36/BRV-97-414-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28cb/9293187/7b509af155c0/BRV-97-414-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28cb/9293187/d49423d46c9f/BRV-97-414-g009.jpg

相似文献

[1]
The conundrum of pharyngeal teeth origin: the role of germ layers, pouches, and gill slits.

Biol Rev Camb Philos Soc. 2022-2

[2]
Multiple epithelia are required to develop teeth deep inside the pharynx.

Proc Natl Acad Sci U S A. 2020-5-12

[3]
Periderm fate and independence of tooth formation are conserved across osteichthyans.

Evodevo. 2024-10-3

[4]
Evolutionary and developmental origins of the vertebrate dentition.

J Anat. 2009-4

[5]
Dual epithelial origin of vertebrate oral teeth.

Nature. 2008-10-9

[6]
Origin and evolution of gnathostome dentitions: a question of teeth and pharyngeal denticles in placoderms.

Biol Rev Camb Philos Soc. 2005-5

[7]
The ins and outs of the evolutionary origin of teeth.

Evol Dev. 2016

[8]
Endodermal/ectodermal interfaces during pharyngeal segmentation in vertebrates.

J Anat. 2014-11

[9]
Differential retinoic acid sensitivity of oral and pharyngeal teeth in medaka (Oryzias latipes) supports the importance of pouch-cleft contacts in pharyngeal tooth initiation.

Dev Dyn. 2024-12

[10]
Fgf signalling is required for gill slit formation in the skate, Leucoraja erinacea.

Dev Biol. 2024-2

引用本文的文献

[1]
A new 'acanthothoracid' placoderm from the Arctic Canada (Early Devonian) and its bearing on the evolution of jaws and teeth.

R Soc Open Sci. 2025-9-3

[2]
The Morphogenesis, Pathogenesis, and Molecular Regulation of Human Tooth Development-A Histological Review.

Int J Mol Sci. 2025-6-27

[3]
Morphogenesis of pteraspid heterostracan oral plates and the evolutionary origin of teeth.

R Soc Open Sci. 2024-12-18

[4]
Periderm fate and independence of tooth formation are conserved across osteichthyans.

Evodevo. 2024-10-3

[5]
Modulation of tooth regeneration through opposing responses to Wnt and BMP signals in teleosts.

Development. 2023-12-1

[6]
The Germinal Origin of Salivary and Lacrimal Glands and the Contributions of Neural Crest Cell-Derived Epithelium to Tissue Regeneration.

Int J Mol Sci. 2023-9-5

[7]
Interference with the retinoic acid signalling pathway inhibits the initiation of teeth and caudal primary scales in the small-spotted catshark .

PeerJ. 2023

[8]
Spatiotemporal characteristics of the pharyngeal teeth in interspecific distant hybrids of cyprinid fish: Phylogeny and expression of the initiation marker genes.

Front Genet. 2022-8-16

[9]
Complex enameloid microstructure of †Ischyrhiza mira rostral denticles.

J Anat. 2022-9

本文引用的文献

[1]
Phylogeny of frogs as inferred from primarily larval characters (Amphibia:Anura).

Cladistics. 2003-2

[2]
Acanthodian dental development and the origin of gnathostome dentitions.

Nat Ecol Evol. 2021-7

[3]
Coevolution of enamel, ganoin, enameloid, and their matrix SCPP genes in osteichthyans.

iScience. 2021-1-1

[4]
Oral and Palatal Dentition of Axolotl Arises From a Common Tooth-Competent Zone Along the Ecto-Endodermal Boundary.

Front Cell Dev Biol. 2021-1-11

[5]
The developmental relationship between teeth and dermal odontodes in the most primitive bony fish .

Elife. 2020-12-15

[6]
The second pharyngeal pouch is generated by dynamic remodeling of endodermal epithelium in zebrafish.

Development. 2020-12-23

[7]
Multiple epithelia are required to develop teeth deep inside the pharynx.

Proc Natl Acad Sci U S A. 2020-5-12

[8]
Molecular and cellular mechanisms of tooth development, homeostasis and repair.

Development. 2020-1-24

[9]
Tooth replacement in early sarcopterygians.

R Soc Open Sci. 2019-11-13

[10]
Recent advancements in understanding fin regeneration in zebrafish.

Wiley Interdiscip Rev Dev Biol. 2020-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索