Suppr超能文献

[Effects of electromagnetic pulse exposure on the permeability of inner blood-retinal barrier model in vitro].

作者信息

Li Hai-juan, Yang Long-long, Tian Wei, Liu Jun-ju, Xie Xue-jun, Guo Guo-zhen

机构信息

Department of Radiation Medicine, College of Preventive Medicine, Fourth Military Medical University, Xi'an 710032, China.

出版信息

Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi. 2012 Mar;30(3):181-5.

Abstract

OBJECTIVE

To establish the inner blood-retinal barrier (BRB) model in vitro by co-culturing RF/6A cells and C6 cells and to investigate the effects of EMP (200 kV/m, 200 pulses) exposure on the permeability of the inner BRB model in vitro.

METHODS

RF/6A cells and C6 cells were co-cultured on transwell, and the characteristic of the inner BRB model was assessed by detecting transendothelial electrical resistance (TEER) and the permeability of horseradish peroxidase (HRP). The co-cultured model was exposed or sham exposed to the EMP (200 kV/m 200 pulses) for 0.5, 3, 6, 12, 24 h in vitro, then TEER and the permeability of HRP were measured for studying the effects of EMP on the permeability of inner BRB model in vitro.

RESULTS

TEER value (145 Ωcm(2)) of the co-culturing inner BRB model significantly increased, as compared to that of RF/6A cells alone model (P < 0.05) on the 6th day after inoculation. There was significant difference of permeability of HRP between the co-culturing inner BRB model and RF/6A cells alone model (P < 0.05). The ability of inhibiting large molecular materials in the co-culturing inner BRB model enhanced. The TEER value decreased and the permeability of HRP increased as compared to the sham group at 0.5, 3, 6 h after the exposure.

CONCLUSION

The inner BRB model by co-culturing RF/6A cells and C6 cells in vitro is efficient and suitable to study the alterations of the restricted permeability function of the inner BRB. EMP (200 kV/m for 200 pulses) could induce the enhanced permeability of the inner BRB model in vitro.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验