Guo Songjun, Chen Mei, Wen Sheng, Sheng Guoying, Fu Jiamo
School of Environment, Guangxi University, Nanning, People's Republic of China.
Isotopes Environ Health Stud. 2012;48(4):473-82. doi: 10.1080/10256016.2012.702113. Epub 2012 Jul 18.
δ(13)C values of gaseous acetaldehyde were measured by gas chromatograph-combustion-isotope ratio mass spectrometer (GC-C-IRMS) via sodium bisulfite (NaHSO(3)) adsorption and cysteamine derivatisation. Gaseous acetaldehyde was collected via NaHSO(3)-coated Sep-Pak(®) silica gel cartridge, then derivatised with cysteamine, and then the δ(13)C value of the acetaldehyde-cysteamine derivative was measured by GC-C-IRMS. Using two acetaldehydes with different δ(13)C values, derivatisation experiments were carried out to cover concentrations between 0.009×10(-3) and 1.96×10(-3) mg·l(-1)) of atmospheric acetaldehyde, and then δ(13)C fractionation was evaluated in the derivatisation of acetaldehyde based on stoichiometric mass balance after measuring the δ(13)C values of acetaldehyde, cysteamine and the acetaldehyde-cysteamine derivative. δ(13)C measurements in the derivertisation process showed good reproducibility (<0.5 ‰) for gaseous acetaldehyde. The differences between predicted and measured δ(13)C values were 0.04-0.31 ‰ for acetaldehyde-cysteamine derivative, indicating that the derivatisation introduces no isotope fractionation for gaseous acetaldehyde, and obtained δ(13)C values of acetaldehyde in ambient air at the two sites were distinct (-34.00 ‰ at an urban site versus-31.00 ‰ at a forest site), implying potential application of the method to study atmospheric acetaldehyde.