Suppr超能文献

热脱附气相色谱同位素比质谱法分析大气挥发性有机化合物的 δD 和 δ13C。

δD and δ13C analyses of atmospheric volatile organic compounds by thermal desorption gas chromatography isotope ratio mass spectrometry.

机构信息

WA-Organic and Isotope Geochemistry Centre, The Institute for Geoscience Research, Department of Chemistry, Curtin University, Building 500, Kent Street, GPO Box U1987, Perth, WA 6845, Australia.

出版信息

J Chromatogr A. 2011 Sep 16;1218(37):6511-7. doi: 10.1016/j.chroma.2011.06.098. Epub 2011 Jul 3.

Abstract

This paper describes the establishment of a robust method to determine compound specific δD and δ(13)C values of volatile organic compounds (VOCs) in a standard mixture ranging between C(6) and C(10) and was applied to various complex emission samples, e.g. from biomass combustion and car exhaust. A thermal desorption (TD) unit was linked to a gas chromatography isotope ratio mass spectrometer (GC-irMS) to enable compound specific isotope analysis (CSIA) of gaseous samples. TenaxTA was used as an adsorbent material in stainless steel TD tubes. We determined instrument settings to achieve a minimal water background level for reliable δD analysis and investigated the impact of storage time on δD and δ(13)C values of collected VOCs (176 days and 40 days of storage, respectively). Most of the standard compounds investigated showed standard deviations (SD)<6‰ (δD) when stored for 148 days at 4 °C. However, benzene revealed occasionally D depleted values (21‰ SD) for unknown reasons. δ(13)C analysis demonstrated that storage of 40 days had no effect on VOCs investigated. We also showed that breakthrough (benzene and toluene, 37% and 7%, respectively) had only a negligible effect (0.7‰ and 0.4‰, respectively) on δ(13)C values of VOCs on the sample tube. We established that the sample portion collected at the split flow effluent of the TD unit can be used as a replicate sample for isotope analysis saving valuable sampling time and resources. We also applied TD-GC-irMS to different emission samples (biomass combustion, petrol and diesel car engines exhaust) and for the first time δD values of atmospheric VOCs in the above range are reported. Significant differences in δD of up to 130‰ were observed between VOCs in emissions from petrol car engine exhaust and biomass combustion (Karri tree). However, diesel car emissions showed a high content of highly complex unresolved mixtures thus a baseline separation of VOCs was not achieved for stable hydrogen isotope analysis. The ability to analyse δD by TD-GC-irMS complements the characterisation of atmospheric VOCs and is maybe used for establishing further source(s).

摘要

本文介绍了一种稳健的方法,用于确定标准混合物中挥发性有机化合物 (VOC) 的化合物特异性 δD 和 δ(13)C 值,范围在 C(6) 到 C(10) 之间,并将其应用于各种复杂的排放样品,例如生物质燃烧和汽车尾气。热解吸 (TD) 单元与气相色谱同位素质谱联用 (GC-irMS) 相连,以实现气态样品的化合物特异性同位素分析 (CSIA)。TenaxTA 被用作不锈钢 TD 管中的吸附材料。我们确定了仪器设置,以实现可靠的 δD 分析的最小水背景水平,并研究了储存时间对收集的 VOCs 的 δD 和 δ(13)C 值的影响 (分别为 176 天和 40 天的储存时间)。在 4°C 下储存 148 天时,大多数研究的标准化合物的标准偏差 (SD)<6‰ (δD)。然而,苯由于未知原因偶尔会出现 D 耗尽值 (21‰ SD)。δ(13)C 分析表明,储存 40 天对所研究的 VOC 没有影响。我们还表明,TD 单元分流出口处的穿透 (苯和甲苯,分别为 37%和 7%) 对样品管中 VOCs 的 δ(13)C 值只有很小的影响 (分别为 0.7‰ 和 0.4‰)。我们确定可以将 TD 单元分流出口处收集的样品部分用作同位素分析的重复样品,从而节省宝贵的采样时间和资源。我们还将 TD-GC-irMS 应用于不同的排放样品 (生物质燃烧、汽油和柴油汽车发动机尾气),并首次报告了上述范围内大气 VOCs 的 δD 值。在汽油车发动机尾气和生物质燃烧 (卡里树) 排放的 VOCs 之间观察到高达 130‰ 的 δD 显著差异。然而,柴油车排放的高含量高度复杂的未解析混合物,因此未能为稳定氢同位素分析实现 VOCs 的基线分离。TD-GC-irMS 分析 δD 的能力补充了大气 VOCs 的特征描述,也许可用于确定进一步的来源。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验