Suppr超能文献

蝗虫听觉系统中时间和种群稀疏性的非线性计算。

Nonlinear computations underlying temporal and population sparseness in the auditory system of the grasshopper.

机构信息

Behavioral Physiology Group, Department of Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany.

出版信息

J Neurosci. 2012 Jul 18;32(29):10053-62. doi: 10.1523/JNEUROSCI.5911-11.2012.

Abstract

Sparse coding schemes are employed by many sensory systems and implement efficient coding principles. Yet, the computations yielding sparse representations are often only partly understood. The early auditory system of the grasshopper produces a temporally and population-sparse representation of natural communication signals. To reveal the computations generating such a code, we estimated 1D and 2D linear-nonlinear models. We then used these models to examine the contribution of different model components to response sparseness. 2D models were better able to reproduce the sparseness measured in the system: while 1D models only captured 55% of the population sparseness at the network's output, 2D models accounted for 88% of it. Looking at the model structure, we could identify two types of computation, which increase sparseness. First, a sensitivity to the derivative of the stimulus and, second, the combination of a fast, excitatory and a slow, suppressive feature. Both were implemented in different classes of cells and increased the specificity and diversity of responses. The two types produced more transient responses and thereby amplified temporal sparseness. Additionally, the second type of computation contributed to population sparseness by increasing the diversity of feature selectivity through a wide range of delays between an excitatory and a suppressive feature. Both kinds of computation can be implemented through spike-frequency adaptation or slow inhibition-mechanisms found in many systems. Our results from the auditory system of the grasshopper are thus likely to reflect general principles underlying the emergence of sparse representations.

摘要

稀疏编码方案被许多感觉系统采用,实现了有效的编码原则。然而,产生稀疏表示的计算通常只是部分理解。 蝗虫的早期听觉系统对自然通讯信号产生了时空和群体稀疏的表示。为了揭示产生这种编码的计算,我们估计了 1D 和 2D 线性非线性模型。然后,我们使用这些模型来检查不同模型组件对响应稀疏性的贡献。2D 模型能够更好地复制系统中测量到的稀疏性:虽然 1D 模型只能在网络输出处捕获到群体稀疏性的 55%,但 2D 模型则占 88%。从模型结构来看,我们可以识别出两种增加稀疏性的计算类型。首先,对刺激导数的敏感性,其次,快速、兴奋和缓慢、抑制特征的组合。这两种类型都在不同类型的细胞中实现,提高了响应的特异性和多样性。这两种类型产生了更多的瞬态响应,从而放大了时间稀疏性。此外,第二种计算类型通过在兴奋性和抑制性特征之间产生广泛的延迟来增加特征选择性的多样性,从而有助于群体稀疏性。这两种类型的计算都可以通过尖峰频率适应或许多系统中发现的缓慢抑制机制来实现。因此,我们从蝗虫听觉系统中得到的结果可能反映了稀疏表示出现的一般原则。

相似文献

3
Efficient transformation of an auditory population code in a small sensory system.在一个小型感觉系统中,听觉群体编码的高效转换。
Proc Natl Acad Sci U S A. 2011 Aug 16;108(33):13812-7. doi: 10.1073/pnas.1104506108. Epub 2011 Aug 8.
6
Adaptive regulation of sparseness by feedforward inhibition.通过前馈抑制对稀疏性进行适应性调节。
Nat Neurosci. 2007 Sep;10(9):1176-84. doi: 10.1038/nn1947. Epub 2007 Jul 29.

引用本文的文献

7
Response recovery in the locust auditory pathway.蝗虫听觉通路中的反应恢复。
J Neurophysiol. 2016 Jan 1;115(1):510-9. doi: 10.1152/jn.00832.2015. Epub 2015 Nov 25.
8
Firing-rate resonances in the peripheral auditory system of the cricket, Gryllus bimaculatus.双斑蟋外周听觉系统中的放电率共振
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2015 Nov;201(11):1075-90. doi: 10.1007/s00359-015-1036-1. Epub 2015 Aug 21.

本文引用的文献

2
Synergy from silence in a combinatorial neural code.组合神经代码中的沉默协同作用。
J Neurosci. 2011 Nov 2;31(44):15732-41. doi: 10.1523/JNEUROSCI.0301-09.2011.
4
Efficient transformation of an auditory population code in a small sensory system.在一个小型感觉系统中,听觉群体编码的高效转换。
Proc Natl Acad Sci U S A. 2011 Aug 16;108(33):13812-7. doi: 10.1073/pnas.1104506108. Epub 2011 Aug 8.
5
Two-dimensional adaptation in the auditory forebrain.听觉前脑的二维适应
J Neurophysiol. 2011 Oct;106(4):1841-61. doi: 10.1152/jn.00905.2010. Epub 2011 Jul 13.
6
Efficient computation via sparse coding in electrosensory neural networks.通过电感受神经网络中的稀疏编码进行高效计算。
Curr Opin Neurobiol. 2011 Oct;21(5):752-60. doi: 10.1016/j.conb.2011.05.016. Epub 2011 Jun 16.
8
Sparse coding in striate and extrastriate visual cortex.纹状和皮层外视皮质中的稀疏编码。
J Neurophysiol. 2011 Jun;105(6):2907-19. doi: 10.1152/jn.00594.2010. Epub 2011 Apr 6.
9
Minimal models of multidimensional computations.多维计算的最小模型。
PLoS Comput Biol. 2011 Mar;7(3):e1001111. doi: 10.1371/journal.pcbi.1001111. Epub 2011 Mar 24.
10
System identification of Drosophila olfactory sensory neurons.果蝇嗅觉感觉神经元的系统鉴定
J Comput Neurosci. 2011 Feb;30(1):143-61. doi: 10.1007/s10827-010-0265-0. Epub 2010 Aug 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验