Suppr超能文献

纹状和皮层外视皮质中的稀疏编码。

Sparse coding in striate and extrastriate visual cortex.

机构信息

Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.

出版信息

J Neurophysiol. 2011 Jun;105(6):2907-19. doi: 10.1152/jn.00594.2010. Epub 2011 Apr 6.

Abstract

Theoretical studies of mammalian cortex argue that efficient neural codes should be sparse. However, theoretical and experimental studies have used different definitions of the term "sparse" leading to three assumptions about the nature of sparse codes. First, codes that have high lifetime sparseness require few action potentials. Second, lifetime-sparse codes are also population-sparse. Third, neural codes are optimized to maximize lifetime sparseness. Here, we examine these assumptions in detail and test their validity in primate visual cortex. We show that lifetime and population sparseness are not necessarily correlated and that a code may have high lifetime sparseness regardless of how many action potentials it uses. We measure lifetime sparseness during presentation of natural images in three areas of macaque visual cortex, V1, V2, and V4. We find that lifetime sparseness does not increase across the visual hierarchy. This suggests that the neural code is not simply optimized to maximize lifetime sparseness. We also find that firing rates during a challenging visual task are higher than theoretical values based on metabolic limits and that responses in V1, V2, and V4 are well-described by exponential distributions. These findings are consistent with the hypothesis that neurons are optimized to maximize information transmission subject to metabolic constraints on mean firing rate.

摘要

哺乳动物皮层的理论研究认为,有效的神经编码应该是稀疏的。然而,理论和实验研究使用了不同的“稀疏”定义,导致对稀疏编码性质的三种假设。首先,具有高终生稀疏性的编码需要很少的动作电位。其次,终生稀疏的编码也是种群稀疏的。第三,神经编码被优化以最大化终生稀疏性。在这里,我们详细地检验了这些假设,并在灵长类动物视觉皮层中检验了它们的有效性。我们表明,终生稀疏性和种群稀疏性不一定相关,并且一个编码可以具有高的终生稀疏性,而不管它使用多少动作电位。我们在猕猴视觉皮层的三个区域 V1、V2 和 V4 中测量了自然图像呈现期间的终生稀疏性。我们发现终生稀疏性不会在视觉层次结构中增加。这表明神经编码不是简单地优化以最大化终生稀疏性。我们还发现,在一项具有挑战性的视觉任务中,放电率高于基于代谢限制的理论值,并且 V1、V2 和 V4 的反应可以很好地用指数分布来描述。这些发现与神经元被优化以在平均放电率的代谢限制下最大化信息传输的假设是一致的。

相似文献

1
Sparse coding in striate and extrastriate visual cortex.纹状和皮层外视皮质中的稀疏编码。
J Neurophysiol. 2011 Jun;105(6):2907-19. doi: 10.1152/jn.00594.2010. Epub 2011 Apr 6.
10
A sparse object coding scheme in area V4.V4 区的稀疏对象编码方案。
Curr Biol. 2011 Feb 22;21(4):288-93. doi: 10.1016/j.cub.2011.01.013.

引用本文的文献

2
Computations that sustain neural feature selectivity across processing stages.在多个处理阶段维持神经特征选择性的计算。
PLoS Comput Biol. 2025 Jun 20;21(6):e1013075. doi: 10.1371/journal.pcbi.1013075. eCollection 2025 Jun.
3
4
Adaptation to visual sparsity enhances responses to isolated stimuli.对视觉稀疏性的适应增强了对孤立刺激的反应。
Curr Biol. 2024 Dec 16;34(24):5697-5713.e8. doi: 10.1016/j.cub.2024.10.053. Epub 2024 Nov 21.
6
Representational maps in the brain: concepts, approaches, and applications.大脑中的表征图谱:概念、方法及应用。
Front Cell Neurosci. 2024 Mar 22;18:1366200. doi: 10.3389/fncel.2024.1366200. eCollection 2024.
8
Beyond ℓ1 sparse coding in V1.V1 中的超越 ℓ1 稀疏编码。
PLoS Comput Biol. 2023 Sep 12;19(9):e1011459. doi: 10.1371/journal.pcbi.1011459. eCollection 2023 Sep.
9
A Redundant Cortical Code for Speech Envelope.语音包络的冗余皮质编码
J Neurosci. 2023 Jan 4;43(1):93-112. doi: 10.1523/JNEUROSCI.1616-21.2022. Epub 2022 Nov 15.

本文引用的文献

1
Neural representation of natural images in visual area V2.V2 视觉区中自然图像的神经表示。
J Neurosci. 2010 Feb 10;30(6):2102-14. doi: 10.1523/JNEUROSCI.4099-09.2010.
3
Adaptive regulation of sparseness by feedforward inhibition.通过前馈抑制对稀疏性进行适应性调节。
Nat Neurosci. 2007 Sep;10(9):1176-84. doi: 10.1038/nn1947. Epub 2007 Jul 29.
10
How close are we to understanding v1?我们距离理解v1有多近?
Neural Comput. 2005 Aug;17(8):1665-99. doi: 10.1162/0899766054026639.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验