Catsigeras Eleonora, Guiraud Pierre
Instituto de Matemática, Universidad de la República, Montevideo, Uruguay.
J Math Biol. 2013 Sep;67(3):609-55. doi: 10.1007/s00285-012-0560-7. Epub 2012 Jul 21.
We study the global dynamics of integrate and fire neural networks composed of an arbitrary number of identical neurons interacting by inhibition and excitation. We prove that if the interactions are strong enough, then the support of the stable asymptotic dynamics consists of limit cycles. We also find sufficient conditions for the synchronization of networks containing excitatory neurons. The proofs are based on the analysis of the equivalent dynamics of a piecewise continuous Poincaré map associated to the system. We show that for efficient interactions the Poincaré map is piecewise contractive. Using this contraction property, we prove that there exist a countable number of limit cycles attracting all the orbits dropping into the stable subset of the phase space. This result applies not only to the Poincaré map under study, but also to a wide class of general n-dimensional piecewise contractive maps.
我们研究了由任意数量通过抑制和兴奋相互作用的相同神经元组成的积分发放神经网络的全局动力学。我们证明,如果相互作用足够强,那么稳定渐近动力学的支撑集由极限环组成。我们还找到了包含兴奋性神经元的网络同步的充分条件。证明基于对与该系统相关的分段连续庞加莱映射的等效动力学的分析。我们表明,对于有效的相互作用,庞加莱映射是分段收缩的。利用这种收缩性质,我们证明存在可数数量的极限环吸引所有落入相空间稳定子集的轨道。这一结果不仅适用于所研究的庞加莱映射,也适用于一类广泛的一般 n 维分段收缩映射。