Suppr超能文献

广义积分发放神经元中的局部收缩动力学

Locally Contractive Dynamics in Generalized Integrate-and-Fire Neurons.

作者信息

Jimenez Nicolas D, Mihalas Stefan, Brown Richard, Niebur Ernst, Rubin Jonathan

机构信息

Allen Institute for Brain Science, Seattle, WA 98103.

Department of Mathematics, Johns Hopkins University, Baltimore, MD 21218.

出版信息

SIAM J Appl Dyn Syst. 2013 Sep 10;12(3):1474-1514. doi: 10.1137/120900435.

Abstract

Integrate-and-fire models of biological neurons combine differential equations with discrete spike events. In the simplest case, the reset of the neuronal voltage to its resting value is the only spike event. The response of such a model to constant input injection is limited to tonic spiking. We here study a generalized model in which two simple spike-induced currents are added. We show that this neuron exhibits not only tonic spiking at various frequencies but also the commonly observed neuronal bursting. Using analytical and numerical approaches, we show that this model can be reduced to a one-dimensional map of the adaptation variable and that this map is locally contractive over a broad set of parameter values. We derive a sufficient analytical condition on the parameters for the map to be globally contractive, in which case all orbits tend to a tonic spiking state determined by the fixed point of the return map. We then show that bursting is caused by a discontinuity in the return map, in which case the map is . We perform a detailed analysis of a class of piecewise contractive maps that we call bursting maps and show that they robustly generate stable bursting behavior. To the best of our knowledge, this work is the first to point out the intimate connection between bursting dynamics and piecewise contractive maps. Finally, we discuss bifurcations in this return map, which cause transitions between spiking patterns.

摘要

生物神经元的积分发放模型将微分方程与离散的脉冲事件相结合。在最简单的情况下,神经元电压重置为其静息值是唯一的脉冲事件。这种模型对恒定输入注入的响应仅限于强直性发放。我们在此研究一个广义模型,其中添加了两种简单的脉冲诱导电流。我们表明,这种神经元不仅在各种频率下表现出强直性发放,还表现出常见的神经元爆发。使用解析和数值方法,我们表明该模型可以简化为适应变量的一维映射,并且该映射在广泛的参数值集上是局部收缩的。我们推导了该映射全局收缩的参数的充分解析条件,在这种情况下,所有轨道都趋向于由返回映射的不动点确定的强直性发放状态。然后我们表明,爆发是由返回映射中的不连续性引起的,在这种情况下,映射是……我们对一类我们称为爆发映射的分段收缩映射进行了详细分析,并表明它们稳健地产生稳定的爆发行为。据我们所知,这项工作是首次指出爆发动力学与分段收缩映射之间的密切联系。最后,我们讨论了这个返回映射中的分岔,它导致发放模式之间的转变。

相似文献

2
Silicon modeling of the Mihalaş-Niebur neuron.米哈拉斯-尼布尔神经元的硅模型
IEEE Trans Neural Netw. 2011 Dec;22(12):1915-27. doi: 10.1109/TNN.2011.2167020. Epub 2011 Oct 10.
4
Exact mean-field models for spiking neural networks with adaptation.具有适应机制的尖峰神经网络的精确平均场模型。
J Comput Neurosci. 2022 Nov;50(4):445-469. doi: 10.1007/s10827-022-00825-9. Epub 2022 Jul 14.
10
Hybrid integrate-and-fire model of a bursting neuron.爆发神经元的混合积分发放模型。
Neural Comput. 2003 Dec;15(12):2843-62. doi: 10.1162/089976603322518768.

本文引用的文献

5
Lapicque's 1907 paper: from frogs to integrate-and-fire.拉皮克1907年的论文:从青蛙到积分发放模型。
Biol Cybern. 2007 Dec;97(5-6):337-9. doi: 10.1007/s00422-007-0190-0. Epub 2007 Oct 30.
8
Transition to bursting via deterministic chaos.通过确定性混沌转变为爆发状态。
Phys Rev Lett. 2006 Jul 28;97(4):048102. doi: 10.1103/PhysRevLett.97.048102. Epub 2006 Jul 27.
9
Which model to use for cortical spiking neurons?对于皮层发放神经元应使用哪种模型?
IEEE Trans Neural Netw. 2004 Sep;15(5):1063-70. doi: 10.1109/TNN.2004.832719.
10
Modeling of spiking-bursting neural behavior using two-dimensional map.基于二维映射的脉冲发放-爆发式神经行为建模
Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Apr;65(4 Pt 1):041922. doi: 10.1103/PhysRevE.65.041922. Epub 2002 Apr 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验