Collet Pierre, Méléard Sylvie, Metz Johan A J
CPHT Ecole Polytechnique, CNRS UMR 7644, route de Saclay, 91128, Palaiseau Cedex, France.
J Math Biol. 2013 Sep;67(3):569-607. doi: 10.1007/s00285-012-0562-5. Epub 2012 Jul 21.
Adaptive dynamics (AD) so far has been put on a rigorous footing only for clonal inheritance. We extend this to sexually reproducing diploids, although admittedly still under the restriction of an unstructured population with Lotka-Volterra-like dynamics and single locus genetics (as in Kimura's in Proc Natl Acad Sci USA 54: 731-736, 1965 infinite allele model). We prove under the usual smoothness assumptions, starting from a stochastic birth and death process model, that, when advantageous mutations are rare and mutational steps are not too large, the population behaves on the mutational time scale (the 'long' time scale of the literature on the genetical foundations of ESS theory) as a jump process moving between homozygous states (the trait substitution sequence of the adaptive dynamics literature). Essential technical ingredients are a rigorous estimate for the probability of invasion in a dynamic diploid population, a rigorous, geometric singular perturbation theory based, invasion implies substitution theorem, and the use of the Skorohod M 1 topology to arrive at a functional convergence result. In the small mutational steps limit this process in turn gives rise to a differential equation in allele or in phenotype space of a type referred to in the adaptive dynamics literature as 'canonical equation'.
到目前为止,适应性动力学(AD)仅在严格的克隆遗传基础上得以确立。我们将其扩展到有性繁殖的二倍体,尽管仍受限于具有类似洛特卡 - 沃尔泰拉动力学和单基因座遗传学的无结构种群(如木村资生在《美国国家科学院院刊》54: 731 - 736, 1965年无限等位基因模型中所述)。我们从一个随机生死过程模型出发,在通常的光滑性假设下证明,当有利突变罕见且突变步长不太大时,种群在突变时间尺度(关于ESS理论遗传基础文献中的“长”时间尺度)上表现为在纯合状态之间移动的跳跃过程(适应性动力学文献中的性状替代序列)。关键的技术要素包括对动态二倍体种群中入侵概率的严格估计、基于严格几何奇异摄动理论的入侵意味着替代定理,以及使用斯科罗霍德M1拓扑得到一个泛函收敛结果。在小突变步长极限下,这个过程进而在等位基因或表型空间中产生一个在适应性动力学文献中被称为“典范方程”的微分方程。