Suppr超能文献

具有连续特征的结构化群体的简单健身代理,以及关于单倍二倍体和遗传二态性进化的案例研究。

A simple fitness proxy for structured populations with continuous traits, with case studies on the evolution of haplo-diploids and genetic dimorphisms.

机构信息

Institute of Biology and Mathematical Institute, Leiden University, P.O. Box 9512 , 2300RA, Leiden, The Netherlands.

出版信息

J Biol Dyn. 2011 Mar;5(2):163-90. doi: 10.1080/17513758.2010.502256.

Abstract

For structured populations in equilibrium with everybody born equal, ln(R (0)) is a useful fitness proxy for evolutionarily steady strategy (ESS) and most adaptive dynamics calculations, with R (0) the average lifetime number of offspring in the clonal and haploid cases, and half the average lifetime number of offspring fathered or mothered for Mendelian diploids. When individuals have variable birth states, as is, for example, the case in spatial models, R (0) is itself an eigenvalue, which usually cannot be expressed explicitly in the trait vectors under consideration. In that case, Q(Y| X):=-det (I-L(Y| X)) can often be used as fitness proxy, with L the next-generation matrix for a potential mutant characterized by the trait vector Y in the (constant) environment engendered by a resident characterized by X. If the trait space is connected, global uninvadability can be determined from it. Moreover, it can be used in all the usual local calculations like the determination of evolutionarily singular trait vectors and their local invadability and attractivity. We conclude with three extended case studies demonstrating the usefulness of Q: the calculation of ESSs under haplo-diploid genetics (I), of evolutionarily steady genetic dimorphisms (ESDs) with a priori proportionality of macro- and micro-gametic outputs (an assumption that is generally made but the fulfilment of which is a priori highly exceptional) (II), and of ESDs without such proportionality (III). These case studies should also have some interest in their own right for the spelled out calculation recipes and their underlying modelling methodology.

摘要

对于处于平衡状态且每个人出生时都相等的结构种群,ln(R(0)) 是进化稳定策略(ESS)和大多数适应动态计算的有用适应度代理,其中 R(0) 是无性和单倍体情况下克隆后代的平均终生数量,以及孟德尔二倍体后代的平均终生数量的一半。当个体具有可变的生育状态时,例如在空间模型中,R(0) 本身就是一个特征值,通常不能在考虑的特征向量中显式表示。在这种情况下,Q(Y|X):=-det(I-L(Y|X)) 通常可以用作适应度代理,其中 L 是由特征向量 Y 描述的潜在突变体的下一代矩阵,该特征向量在由特征向量 X 描述的居民所产生的(恒定)环境中。如果特征空间是连通的,则可以从其中确定全局不可入侵性。此外,它可以用于所有常见的局部计算,例如确定进化奇异特征向量及其局部可入侵性和吸引力。我们以三个扩展案例研究结束,这些研究展示了 Q 的有用性:在单倍二倍体遗传学下的 ESS 计算(I)、具有宏观和微观配子输出先验比例的进化稳定遗传二态性(ESD)(这是一个通常做出的假设,但履行该假设在很大程度上是例外的)(II),以及没有这种比例的 ESD(III)。这些案例研究本身也应该因其阐明的计算配方及其基础建模方法而具有一定的兴趣。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验