Suppr超能文献

迈向多层次进化理论:长期信息整合塑造了突变景观并增强了可进化性。

Toward a theory of multilevel evolution: long-term information integration shapes the mutational landscape and enhances evolvability.

机构信息

Theoretical Biology and Bioinformatics Group, Utrecht University, Utrecht, The Netherlands.

出版信息

Adv Exp Med Biol. 2012;751:195-224. doi: 10.1007/978-1-4614-3567-9_10.

Abstract

Most of evolutionary theory has abstracted away from how information is coded in the genome and how this information is transformed into traits on which selection takes place. While in the earliest stages of biological evolution, in the RNA world, the mapping from the genotype into function was largely predefined by the physical-chemical properties of the evolving entities (RNA replicators, e.g. from sequence to folded structure and catalytic sites), in present-day organisms, the mapping itself is the result of evolution. I will review results of several in silico evolutionary studies which examine the consequences of evolving the genetic coding, and the ways this information is transformed, while adapting to prevailing environments. Such multilevel evolution leads to long-term information integration. Through genome, network, and dynamical structuring, the occurrence and/or effect of random mutations becomes nonrandom, and facilitates rapid adaptation. This is what does happen in the in silico experiments. Is it also what did happen in biological evolution? I will discuss some data that suggest that it did. In any case, these results provide us with novel search images to tackle the wealth of biological data.

摘要

进化理论大多忽略了信息在基因组中的编码方式,以及信息如何转化为选择发生的特征。虽然在生物进化的早期阶段,在 RNA 世界中,基因型到功能的映射在很大程度上是由进化实体(例如 RNA 复制子,从序列到折叠结构和催化位点)的物理化学性质预先定义的,但在现代生物体中,映射本身就是进化的结果。我将回顾一些计算机进化研究的结果,这些研究考察了进化遗传编码以及在适应流行环境时信息转化的方式的后果。这种多层次的进化导致了长期的信息整合。通过基因组、网络和动态结构,随机突变的发生和/或影响变得非随机,并促进了快速适应。这正是计算机实验中发生的情况。这在生物进化中也发生了吗?我将讨论一些数据,表明它确实发生了。无论如何,这些结果为我们提供了新的搜索图像,以解决大量的生物数据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验