European Synchrotron Radiation Facility, BP 181, 38043 Grenoble, France.
Plant Physiol. 2012 Sep;160(1):249-60. doi: 10.1104/pp.112.202051. Epub 2012 Jul 20.
Chlorogenic acids (CGAs) are a group of phenolic secondary metabolites produced by certain plant species and an important component of coffee (Coffea spp.). The CGAs have been implicated in biotic and abiotic stress responses, while the related shikimate esters are key intermediates for lignin biosynthesis. Here, two hydroxycinnamoyl-coenzyme A shikimate/quinate hydroxycinnamoyl transferases (HCT/HQT) from coffee were biochemically characterized. We show, to our knowledge for the first time, that in vitro, HCT is capable of synthesizing the 3,5-O-dicaffeoylquinic acid diester, a major constituent of the immature coffee grain. In order to further understand the substrate specificity and catalytic mechanism of the HCT/HQT, we performed structural and mutagenesis studies of HCT. The three-dimensional structure of a native HCT and a proteolytically stable lysine mutant enabled the identification of important residues involved in substrate specificity and catalysis. Site-directed mutagenesis confirmed the role of residues leucine-400 and phenylalanine-402 in substrate specificity and of histidine-153 and the valine-31 to proline-37 loop in catalysis. In addition, the histidine-154-asparagine mutant was observed to produce 4-fold more dichlorogenic acids compared with the native protein. These data provide, to our knowledge, the first structural characterization of a HCT and, in conjunction with the biochemical and mutagenesis studies presented here, delineate the underlying molecular-level determinants for substrate specificity and catalysis. This work has potential applications in fine-tuning the levels of shikimate and quinate esters (CGAs including dichlorogenic acids) in different plant species in order to generate reduced or elevated levels of the desired target compounds.
绿原酸(CGAs)是某些植物物种产生的一类酚类次生代谢物,也是咖啡(Coffea spp.)的重要组成部分。CGAs 与生物和非生物胁迫反应有关,而相关的莽草酸酯则是木质素生物合成的关键中间产物。在这里,我们对来自咖啡的两种羟基肉桂酰辅酶 A 莽草酸/奎宁酸羟基肉桂酰转移酶(HCT/HQT)进行了生化特性分析。据我们所知,这是首次在体外证明 HCT 能够合成 3,5-O-二咖啡酰奎宁酸二酯,这是未成熟咖啡豆的主要成分。为了进一步了解 HCT/HQT 的底物特异性和催化机制,我们对 HCT 进行了结构和突变研究。天然 HCT 和一种蛋白水解稳定的赖氨酸突变体的三维结构使我们能够鉴定出参与底物特异性和催化的重要残基。定点突变证实了残基亮氨酸-400 和苯丙氨酸-402 对底物特异性的作用,以及组氨酸-153 和缬氨酸-31 到脯氨酸-37 环在催化中的作用。此外,与天然蛋白相比,组氨酸-154-天冬酰胺突变体被观察到产生了 4 倍更多的二绿原酸。这些数据提供了我们所知的第一个 HCT 的结构特征,并且与这里提出的生化和突变研究相结合,阐明了底物特异性和催化的潜在分子水平决定因素。这项工作有可能对不同植物物种中莽草酸和奎宁酸酯(包括二绿原酸的 CGAs)的水平进行微调,以产生所需目标化合物的降低或升高水平。