Suppr超能文献

拟南芥水杨酸生物合成中 EPS1 作为催化剂出现的机制基础。

Mechanistic basis for the emergence of EPS1 as a catalyst in salicylic acid biosynthesis of Brassicaceae.

机构信息

Whitehead Institute for Biomedical Research, Cambridge, MA, USA.

Institute for Plant-Human Interface, Northeastern University, Boston, MA, USA.

出版信息

Nat Commun. 2024 Nov 28;15(1):10356. doi: 10.1038/s41467-024-54437-1.

Abstract

Salicylic acid (SA) production in Brassicaceae plants is uniquely accelerated from isochorismate by EPS1, a newly identified enzyme in the BAHD acyltransferase family. We present crystal structures of EPS1 from Arabidopsis thaliana in both its apo and substrate-analog-bound forms. Integrating microsecond-scale molecular dynamics simulations with quantum mechanical cluster modeling, we propose a pericyclic rearrangement lyase mechanism for EPS1. We further reconstitute the isochorismate-derived SA biosynthesis pathway in Saccharomyces cerevisiae, establishing an in vivo platform to examine the impact of active-site residues on EPS1 functionality. Moreover, stable transgenic expression of EPS1 in soybean increases basal SA levels, highlighting the enzyme's potential to enhance defense mechanisms in non-Brassicaceae plants lacking an EPS1 ortholog. Our findings illustrate the evolutionary adaptation of an ancestral enzyme's active site to enable a novel catalytic mechanism that boosts SA production in Brassicaceae plants.

摘要

水杨酸(SA)在十字花科植物中的产生是由 EPS1 从异分支酸中独特地加速的,EPS1 是 BAHD 酰基转移酶家族中的一种新鉴定的酶。我们展示了拟南芥 EPS1 的apo 和底物类似物结合形式的晶体结构。通过将微秒级分子动力学模拟与量子力学簇模型相结合,我们提出了 EPS1 的周环重排裂解酶机制。我们进一步在酿酒酵母中重建了异分支酸衍生的 SA 生物合成途径,建立了一个体内平台来研究活性位点残基对 EPS1 功能的影响。此外,EPS1 在大豆中的稳定转基因表达增加了基础 SA 水平,突出了该酶在缺乏 EPS1 同源物的非十字花科植物中增强防御机制的潜力。我们的发现说明了祖先酶的活性位点的进化适应,以实现一种新的催化机制,从而在十字花科植物中提高 SA 的产生。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d434/11605079/8482aec30860/41467_2024_54437_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验