Department of Physics and Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, PR China.
J Am Chem Soc. 2012 Aug 22;134(33):13780-6. doi: 10.1021/ja305167h. Epub 2012 Aug 10.
High pressure is an important dimension for the emergent phenomena in transition metal oxides, including high-temperature superconductivity, colossal magnetoresistance, and magnetoelectric coupling. In these multiply correlated systems, the interplay between lattice, charge, orbital, and spin is extremely susceptible to external pressure. Magnetite (Fe(3)O(4)) is one of the oldest known magnetic materials and magnetic minerals, yet its high pressure behaviors are still not clear. In particular, the crystal structure of the high-pressure phase has remained contentious. Here, we investigate the pressure-induced phase transitions in Fe(3)O(4) from first-principles density-functional theory. It is revealed that the net magnetic moment, arising from two ferrimagnetically coupled sublattices in Fe(3)O(4), shows an abrupt drop when entering into the high-pressure phase but recovers finite value when the pressure is beyond 65.1 GPa. The origin lies in the redistribution of Fe 3d orbital occupation with the change of crystal field, where successive structural transitions from ambient pressure phase Fd3[combining overline]m to high pressure phase Pbcm (at 29.7 GPa) and further to Bbmm (at 65.1 GPa) are established accurately. These findings not only explain the experimental observations on the structural and magnetic properties of the highly compressed Fe(3)O(4) but also suggest the existence of highly magnetized magnetite in the Earth's lower mantle.
高压是过渡金属氧化物中涌现现象的一个重要维度,包括高温超导、庞磁电阻和磁电耦合。在这些多关联体系中,晶格、电荷、轨道和自旋之间的相互作用对外界压力极其敏感。磁铁矿 (Fe3O4) 是已知最古老的磁性材料和磁性矿物之一,但它的高压行为仍不清楚。特别是,高压相的晶体结构仍存在争议。在这里,我们从第一性原理密度泛函理论研究了 Fe3O4 的压力诱导相变。结果表明,由于 Fe3O4 中两个亚铁磁耦合亚晶格的净磁矩在进入高压相时会突然下降,但当压力超过 65.1 GPa 时会恢复有限值。其原因在于晶体场变化导致 Fe 3d 轨道占据的重新分配,其中从环境压力相 Fd3[overline]m 到高压相 Pbcm(在 29.7 GPa)和进一步到 Bbmm(在 65.1 GPa)的连续结构转变得到了准确的建立。这些发现不仅解释了对高度压缩的 Fe3O4 的结构和磁性性质的实验观察,还表明在地球下地幔中存在高度磁化的磁铁矿。