Institute of Pharmaceutical Science, Franklin-Wilkins Building, King's College London, 150 Stamford Street, London SE1 9NH, UK.
J Control Release. 2012 Sep 10;162(2):259-66. doi: 10.1016/j.jconrel.2012.07.019. Epub 2012 Jul 21.
The aim of this study was to investigate the impact of nanoparticle dosimetry on the interpretation of results from in vitro experiments involving particle-cell interactions. Three different dose metrics were evaluated: 1) The administered dose (particle mass, number or surface area administered per volume media at the onset of an experiment), 2) the delivered dose (particle mass, number or surface area to reach the cell monolayer via diffusion and sedimentation over the duration of an experiment) and 3) the cellular dose (particle mass, number or surface area internalized by the cells during the experiment). The In Vitro Sedimentation and Diffusion and Dosimetry model (ISDD) was used to calculate particle sedimentation and diffusion in cell culture media to predict delivered dose values. These were compared with administered doses and experimentally determined cellular dose values.
Dosing conditions and predicted delivered dose values were computed in silico using ISDD. In vitro cell association experiments were performed by exposing fluorescently labelled polystyrene beads of 50, 100, 200, 700 and 1000nm diameter to J774A.1 macrophage-like cells and determining the internalized particle content (cellular dose) via fluorescence spectroscopy. Experiments were repeated using lipopolysachharide (LPS) to activate and cytochalasin D to inhibit phagocytosis.
Only a small fraction (0.03-0.33%) of the administered dose was able to interact with the cells for all particle sizes tested. Measured cellular doses in non-activated J774A.1 cells corresponded well with computed delivered dose values for all particle sizes tested under six different exposure conditions. When cellular doses were averaged and normalized to their corresponding delivered doses, the percentage values of cell-associated particles were: 36 ± 10%(50 nm), 15 ± 3%(100 nm), 22 ± 6%(200 nm), 18 ± 4%(700 nm), and 42 ± 19%(1000 nm). Activation of J774A.1 cells with LPS significantly increased the cellular dose (normalized to the delivered dose) in all particle sizes except 50 nm, while cytochalasin D treatment significantly reduced the cellular dose of 100, 200 and 1000 nm particles.
This study demonstrates that dose correction using the ISDD model (i.e. normalization of cellular dose values to the delivered dose) is essential for accurate interpretation of results derived from in vitro particle-cell interaction studies (e.g. particle uptake, cytotoxicity, mechanisms of action, pharmacodynamic studies, etc.). It is of particular relevance to the field of particulate drug delivery systems, because the low density nature of most biomaterials used as drug carriers will result in very low fractions of the administered particle dose reaching the cell monolayer under most commonly used experimental conditions.
本研究旨在探讨纳米颗粒剂量学对颗粒-细胞相互作用体外实验结果解释的影响。评估了三种不同的剂量指标:1)给予剂量(实验开始时每单位体积介质中给予的颗粒质量、数量或表面积),2)传递剂量(通过扩散和在实验过程中的沉降到达细胞单层的颗粒质量、数量或表面积)和 3)细胞内剂量(实验过程中细胞内化的颗粒质量、数量或表面积)。使用体外沉降和扩散及剂量学模型(ISDD)计算细胞培养介质中的颗粒沉降和扩散,以预测传递剂量值。将这些值与给予剂量和通过实验确定的细胞内剂量值进行比较。
使用 ISDD 在计算机上计算给药条件和预测的传递剂量值。通过将荧光标记的聚苯乙烯珠(直径为 50、100、200、700 和 1000nm)暴露于 J774A.1 巨噬细胞样细胞中,并通过荧光光谱法确定内化的颗粒含量(细胞内剂量),进行体外细胞结合实验。使用脂多糖(LPS)激活和细胞松弛素 D 抑制吞噬作用重复实验。
对于所有测试的颗粒尺寸,只有一小部分(0.03-0.33%)的给予剂量能够与细胞相互作用。在六种不同的暴露条件下,对于所有测试的颗粒尺寸,非激活的 J774A.1 细胞中的测量细胞内剂量与计算的传递剂量值非常吻合。当细胞内剂量被平均并归一化为相应的传递剂量时,细胞相关颗粒的百分比值为:36 ± 10%(50nm)、15 ± 3%(100nm)、22 ± 6%(200nm)、18 ± 4%(700nm)和 42 ± 19%(1000nm)。用 LPS 激活 J774A.1 细胞会显著增加所有颗粒尺寸(除了 50nm)的细胞内剂量(归一化为传递剂量),而细胞松弛素 D 处理会显著降低 100、200 和 1000nm 颗粒的细胞内剂量。
本研究表明,使用 ISDD 模型进行剂量校正(即细胞内剂量值归一化为传递剂量)对于准确解释体外颗粒-细胞相互作用研究(例如颗粒摄取、细胞毒性、作用机制、药效学研究等)的结果至关重要。这对于颗粒药物递送系统领域尤其重要,因为大多数用作药物载体的生物材料的低密度性质将导致在最常用的实验条件下,给予的颗粒剂量中只有非常小的一部分到达细胞单层。