Suppr超能文献

利用计算机医嘱实时预测儿科重症监护病房住院时间。

Real-time forecasting of pediatric intensive care unit length of stay using computerized provider orders.

机构信息

Departments of Emergency Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.

出版信息

Crit Care Med. 2012 Nov;40(11):3058-64. doi: 10.1097/CCM.0b013e31825bc399.

Abstract

OBJECTIVE

To develop a model to produce real-time, updated forecasts of patients' intensive care unit length of stay using naturally generated provider orders. The model was designed to be integrated within a computerized decision support system to improve patient flow management.

DESIGN

Retrospective cohort study.

SETTING

Twenty-six bed pediatric intensive care unit within an urban, academic children's hospital using a computerized order entry system.

PATIENTS

A total of 2,178 consecutive pediatric intensive care unit admissions during a 16-month time period.

MEASUREMENTS AND MAIN RESULTS

We obtained unit length of stay measurements, time-stamped provider orders, age, admission source, and readmission status. A joint discrete-time logistic regression model was developed to produce probabilistic length of stay forecasts from continuously updated provider orders. Accuracy was assessed by comparing forecasted expected discharge time with observed discharge time, rank probability scoring, and calibration curves. Cross-validation procedures were conducted. The distribution of length of stay was heavily right-skewed with a mean of 3.5 days (95% confidence interval 0.3-19.1). Provider orders were predictive of length of stay in real-time accurately forecasting discharge within a 12-hr window: 46% for patients within 1 day of discharge, 34% for patients within 2 days of discharge, and 27% for patients within 3 days of discharge. The forecast model incorporating predictive orders demonstrated significant improvements in accuracy compared with forecasts based solely on empirical and temporal information. Seventeen predictive orders were found, grouped by medication, ventilation, laboratory, diet, activity, foreign body, and extracorporeal membrane oxygenation.

CONCLUSIONS

Provider orders reflect dynamic changes in patients' conditions, making them useful for real-time length of stay prediction and patient flow management. Patients' length of stay represent a major source of variability in intensive care unit resource utilization and if accurately predicted and communicated, may lead to proactive bed management with more efficient patient flow.

摘要

目的

利用自然生成的医嘱开发一种模型,以实时、更新的方式预测患者在重症监护病房的停留时间。该模型旨在整合到计算机化决策支持系统中,以改善患者流程管理。

设计

回顾性队列研究。

设置

城市学术儿童医院的 26 张床位儿科重症监护病房,使用计算机化医嘱录入系统。

患者

在 16 个月的时间内,共有 2178 例连续儿科重症监护病房入院患者。

测量和主要结果

我们获得了单位停留时间测量值、带时间戳的医嘱、年龄、入院来源和再入院状态。建立了一个联合离散时间逻辑回归模型,从不断更新的医嘱中生成概率性的停留时间预测。通过比较预测的预期出院时间与实际出院时间、秩概率评分和校准曲线来评估准确性。进行了交叉验证程序。停留时间分布严重右偏,平均值为 3.5 天(95%置信区间为 0.3-19.1)。医嘱实时预测停留时间准确,可在 12 小时窗口内准确预测出院:出院当天内的患者有 46%,出院前两天内的患者有 34%,出院前两天内的患者有 27%。纳入预测性医嘱的预测模型与仅基于经验和时间信息的预测相比,准确性显著提高。发现了 17 条预测性医嘱,分为药物、通气、实验室、饮食、活动、异物和体外膜氧合组。

结论

医嘱反映了患者病情的动态变化,因此可用于实时停留时间预测和患者流程管理。患者的停留时间是重症监护病房资源利用的主要变异性来源,如果能够准确预测和传达,可能会导致更有效的患者流程主动床位管理。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验