Department of Computer Science, Vanderbilt University, Nashville, Tennessee, USA.
Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
J Am Med Inform Assoc. 2021 Nov 25;28(12):2670-2680. doi: 10.1093/jamia/ocab211.
OBJECTIVE: Hospital capacity management depends on accurate real-time estimates of hospital-wide discharges. Estimation by a clinician requires an excessively large amount of effort and, even when attempted, accuracy in forecasting next-day patient-level discharge is poor. This study aims to support next-day discharge predictions with machine learning by incorporating electronic health record (EHR) audit log data, a resource that captures EHR users' granular interactions with patients' records by communicating various semantics and has been neglected in outcome predictions. MATERIALS AND METHODS: This study focused on the EHR data for all adults admitted to Vanderbilt University Medical Center in 2019. We learned multiple advanced models to assess the value that EHR audit log data adds to the daily prediction of discharge likelihood within 24 h and to compare different representation strategies. We applied Shapley additive explanations to identify the most influential types of user-EHR interactions for discharge prediction. RESULTS: The data include 26 283 inpatient stays, 133 398 patient-day observations, and 819 types of user-EHR interactions. The model using the count of each type of interaction in the recent 24 h and other commonly used features, including demographics and admission diagnoses, achieved the highest area under the receiver operating characteristics (AUROC) curve of 0.921 (95% CI: 0.919-0.923). By contrast, the model lacking user-EHR interactions achieved a worse AUROC of 0.862 (0.860-0.865). In addition, 10 of the 20 (50%) most influential factors were user-EHR interaction features. CONCLUSION: EHR audit log data contain rich information such that it can improve hospital-wide discharge predictions.
目的:医院容量管理取决于对全院范围出院情况的准确实时估计。临床医生的估计需要大量的工作,即使尝试了,对预测次日患者级别的出院情况的准确性也很差。本研究旨在通过纳入电子健康记录 (EHR) 审核日志数据,利用机器学习来支持次日出院预测,该数据资源通过传达各种语义来捕获 EHR 用户对患者记录的细粒度交互,并且在结果预测中被忽视。
材料与方法:本研究重点关注 2019 年范德比尔特大学医学中心所有成年患者的 EHR 数据。我们学习了多种高级模型,以评估 EHR 审核日志数据在 24 小时内对每日出院可能性预测的增加价值,并比较不同的表示策略。我们应用 Shapley 加法解释来确定对出院预测最有影响的用户-EHR 交互类型。
结果:数据包括 26283 次住院、133398 个患者日观察和 819 种用户-EHR 交互。使用最近 24 小时内每种交互类型的计数和其他常用特征(包括人口统计学和入院诊断)的模型,获得了最高的接收器操作特征 (AUROC) 曲线下面积 0.921(95%CI:0.919-0.923)。相比之下,缺乏用户-EHR 交互的模型的 AUROC 较差,为 0.862(0.860-0.865)。此外,20 个(50%)最具影响力因素中的 10 个是用户-EHR 交互特征。
结论:EHR 审核日志数据包含丰富的信息,可以提高全院范围的出院预测。
J Am Med Inform Assoc. 2021-11-25
J Am Med Inform Assoc. 2020-12-9
J Am Med Inform Assoc. 2021-6-12
JMIR Med Inform. 2021-9-3
J Am Med Inform Assoc. 2025-5-1
Commun Med (Lond). 2024-11-18
AMIA Jt Summits Transl Sci Proc. 2024-5-31
AMIA Annu Symp Proc. 2020
JMIR Hum Factors. 2021-3-8
J Am Med Inform Assoc. 2021-6-12
J Am Med Inform Assoc. 2021-4-23
Am J Respir Crit Care Med. 2020-12-1
Healthc Inform Res. 2020-7