Suppr超能文献

早期发育的双耳听觉神经元中 NMDA 型谷氨酸受体对神经元兴奋性的控制。

Control of neuronal excitability by NMDA-type glutamate receptors in early developing binaural auditory neurons.

机构信息

VirginiaMerrill Bloedel Hearing Research Center, School of Medicine, University of Washington, Box 357290, Seattle, WA 98195, USA.

出版信息

J Physiol. 2012 Oct 1;590(19):4801-18. doi: 10.1113/jphysiol.2012.228734. Epub 2012 Jul 23.

Abstract

Precise control of neuronal excitability in the auditory brainstem is fundamental for processing timing cues used for sound localization and signal discrimination in complex acoustic environments. In mature nucleus laminaris (NL), the first nucleus responsible for binaural processing in chickens, neuronal excitability is governed primarily by voltage-activated potassium conductances (K(VA)). High levels of K(VA) expression in NL neurons result in one or two initial action potentials (APs) in response to high-frequency synaptic activity or sustained depolarization. Here we show that during a period of synaptogenesis and circuit refinement, before hearing onset, K(VA) conductances are relatively small, in particular low-voltage-activated K(+) conductances (K(LVA)). In spite of this, neuronal output is filtered and repetitive synaptic activity generates only one or two initial APs during a train of stimuli. During this early developmental time period, synaptic NMDA-type glutamate receptors (NMDA-Rs) contain primarily the GluN2B subunit. We show that the slow decay kinetics of GluN2B-containing NMDA-Rs allows synaptic responses to summate, filtering the output of NL neurons before intrinsic properties are fully developed. Weaker Mg(2+) blockade of NMDA-Rs and ambient glutamate early in development generate a tonic NMDA-R-mediated current that sets the membrane potential at more depolarized values. Small KLVA conductances, localized in dendrites, prevent excessive depolarization caused by tonic activation of NMDA-Rs. Thus, before intrinsic properties are fully developed, NMDA-Rs control the output of NL neurons during evoked synaptic transmission.

摘要

精确控制听觉脑干中的神经元兴奋性对于处理用于声音定位和复杂声环境中信号辨别的时间线索至关重要。在成熟的核层(NL)中,NL 是鸡中负责双耳处理的第一个核,神经元兴奋性主要由电压激活的钾电导(K(VA))控制。NL 神经元中高水平的 K(VA)表达导致对高频突触活动或持续去极化的反应产生一个或两个初始动作电位(AP)。在这里,我们表明在突触发生和电路细化期间,在听力出现之前,K(VA)电导相对较小,特别是低电压激活的 K(+)电导(K(LVA))。尽管如此,神经元输出仍被过滤,重复的突触活动在刺激串中仅产生一个或两个初始 AP。在这个早期发育时间段内,突触 NMDA 型谷氨酸受体(NMDA-R)主要包含 GluN2B 亚基。我们表明,包含 GluN2B 的 NMDA-R 的缓慢衰减动力学允许突触反应叠加,在内在特性完全发育之前过滤 NL 神经元的输出。NMDA-R 中较弱的 Mg2+阻断和早期发育中的环境谷氨酸产生持续的 NMDA-R 介导的电流,使膜电位处于更去极化的值。局部在树突中的小 KLVA 电导防止由 NMDA-R 的持续激活引起的过度去极化。因此,在内在特性完全发育之前,NMDA-R 控制诱发突触传递期间 NL 神经元的输出。

相似文献

1
Control of neuronal excitability by NMDA-type glutamate receptors in early developing binaural auditory neurons.
J Physiol. 2012 Oct 1;590(19):4801-18. doi: 10.1113/jphysiol.2012.228734. Epub 2012 Jul 23.
2
Development of glutamatergic synaptic transmission in binaural auditory neurons.
J Neurophysiol. 2010 Sep;104(3):1774-89. doi: 10.1152/jn.00468.2010. Epub 2010 Jul 28.
3
A model of NMDA receptor-mediated activity in dendrites of hippocampal CA1 pyramidal neurons.
J Neurophysiol. 1992 Dec;68(6):2248-59. doi: 10.1152/jn.1992.68.6.2248.
7
Early development of intrinsic and synaptic properties of chicken nucleus laminaris neurons.
Neuroscience. 2008 Apr 22;153(1):131-43. doi: 10.1016/j.neuroscience.2008.01.059. Epub 2008 Feb 13.
8
Tonotopic specialization of auditory coincidence detection in nucleus laminaris of the chick.
J Neurosci. 2005 Feb 23;25(8):1924-34. doi: 10.1523/JNEUROSCI.4428-04.2005.

引用本文的文献

2
Early expression of GluN2A-containing NMDA receptors in a model of fragile X syndrome.
J Neurophysiol. 2024 Apr 1;131(4):768-777. doi: 10.1152/jn.00406.2023. Epub 2024 Feb 21.
3
New Animal Models for Understanding FMRP Functions and FXS Pathology.
Cells. 2022 May 12;11(10):1628. doi: 10.3390/cells11101628.
4
Effects of Neurotrophin-3 on Intrinsic Neuronal Properties at a Central Auditory Structure.
Neurosci Insights. 2020 Dec 10;15:2633105520980442. doi: 10.1177/2633105520980442. eCollection 2020.
5
Ion channel mechanisms underlying frequency-firing patterns of the avian nucleus magnocellularis: A computational model.
Channels (Austin). 2017 Sep 3;11(5):444-458. doi: 10.1080/19336950.2017.1327493. Epub 2017 May 8.
6
Distinct Neural Properties in the Low-Frequency Region of the Chicken Cochlear Nucleus Magnocellularis.
eNeuro. 2017 Apr 11;4(2). doi: 10.1523/ENEURO.0016-17.2017. eCollection 2017 Mar-Apr.
8
Developmental Profile of Ion Channel Specializations in the Avian Nucleus Magnocellularis.
Front Cell Neurosci. 2016 Mar 30;10:80. doi: 10.3389/fncel.2016.00080. eCollection 2016.
9
Factors Influencing Short-term Synaptic Plasticity in the Avian Cochlear Nucleus Magnocellularis.
J Exp Neurosci. 2015 Oct 22;9(Suppl 2):11-24. doi: 10.4137/JEN.S25472. eCollection 2015.

本文引用的文献

3
Plasticity at the axon initial segment.
Commun Integr Biol. 2010 Nov;3(6):597-8. doi: 10.4161/cib.3.6.13242. Epub 2010 Nov 1.
4
Dynamic regulation of NMDA receptor transmission.
J Neurophysiol. 2011 Jan;105(1):162-71. doi: 10.1152/jn.00457.2010. Epub 2010 Oct 27.
6
Glutamate receptor ion channels: structure, regulation, and function.
Pharmacol Rev. 2010 Sep;62(3):405-96. doi: 10.1124/pr.109.002451.
7
Development of glutamatergic synaptic transmission in binaural auditory neurons.
J Neurophysiol. 2010 Sep;104(3):1774-89. doi: 10.1152/jn.00468.2010. Epub 2010 Jul 28.
8
Presynaptic activity regulates Na(+) channel distribution at the axon initial segment.
Nature. 2010 Jun 24;465(7301):1075-8. doi: 10.1038/nature09087. Epub 2010 Jun 13.
9
Going native: voltage-gated potassium channels controlling neuronal excitability.
J Physiol. 2010 Sep 1;588(Pt 17):3187-200. doi: 10.1113/jphysiol.2010.191973. Epub 2010 Jun 2.
10
Control of submillisecond synaptic timing in binaural coincidence detectors by K(v)1 channels.
Nat Neurosci. 2010 May;13(5):601-9. doi: 10.1038/nn.2530. Epub 2010 Apr 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验