Suppr超能文献

开拓神经毒理学的处女地:神经毒性肽作用于糖基化电压门控钠通道的新范式

Mining the virgin land of neurotoxicology: a novel paradigm of neurotoxic peptides action on glycosylated voltage-gated sodium channels.

作者信息

Liu Zhirui, Tao Jie, Ye Pin, Ji Yonghua

机构信息

Laboratory of Neuropharmacology and Neurotoxicology, Shanghai University, Nanchen Road 333, Shanghai 200444, China.

出版信息

J Toxicol. 2012;2012:843787. doi: 10.1155/2012/843787. Epub 2012 Jul 8.

Abstract

Voltage-gated sodium channels (VGSCs) are important membrane protein carrying on the molecular basis for action potentials (AP) in neuronal firings. Even though the structure-function studies were the most pursued spots, the posttranslation modification processes, such as glycosylation, phosphorylation, and alternative splicing associating with channel functions captured less eyesights. The accumulative research suggested an interaction between the sialic acids chains and ion-permeable pores, giving rise to subtle but significant impacts on channel gating. Sodium channel-specific neurotoxic toxins, a family of long-chain polypeptides originated from venomous animals, are found to potentially share the binding sites adjacent to glycosylated region on VGSCs. Thus, an interaction between toxin and glycosylated VGSC might hopefully join the campaign to approach the role of glycosylation in modulating VGSCs-involved neuronal network activity. This paper will cover the state-of-the-art advances of researches on glycosylation-mediated VGSCs function and the possible underlying mechanisms of interactions between toxin and glycosylated VGSCs, which may therefore, fulfill the knowledge in identifying the pharmacological targets and therapeutic values of VGSCs.

摘要

电压门控钠通道(VGSCs)是重要的膜蛋白,是神经元放电中动作电位(AP)的分子基础。尽管结构-功能研究是最受关注的领域,但与通道功能相关的翻译后修饰过程,如糖基化、磷酸化和可变剪接,却较少受到关注。累积的研究表明,唾液酸链与离子通透孔之间存在相互作用,对通道门控产生细微但显著的影响。钠通道特异性神经毒素是一类源自有毒动物的长链多肽,被发现可能与VGSCs上糖基化区域相邻的结合位点共享。因此,毒素与糖基化VGSC之间的相互作用有望参与到探讨糖基化在调节涉及VGSCs的神经网络活动中的作用的研究中来。本文将涵盖糖基化介导的VGSCs功能的最新研究进展以及毒素与糖基化VGSCs之间相互作用的可能潜在机制,这可能会填补在确定VGSCs的药理学靶点和治疗价值方面的知识空白。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5371/3399347/5ccdbc61a530/JT2012-843787.001.jpg

相似文献

2
Voltage-Gated Sodium Channels: A Prominent Target of Marine Toxins.
Mar Drugs. 2021 Oct 5;19(10):562. doi: 10.3390/md19100562.
3
Exploring the obscure profiles of pharmacological binding sites on voltage-gated sodium channels by BmK neurotoxins.
Protein Cell. 2011 Jun;2(6):437-44. doi: 10.1007/s13238-011-1064-8. Epub 2011 Jul 12.
4
The pharmacology of voltage-gated sodium channels in sensory neurones.
Handb Exp Pharmacol. 2009(194):519-61. doi: 10.1007/978-3-540-79090-7_15.
6
Toxins That Affect Voltage-Gated Sodium Channels.
Handb Exp Pharmacol. 2018;246:187-207. doi: 10.1007/164_2017_66.
7
Molecular determinant for the tarantula toxin Jingzhaotoxin-I slowing the fast inactivation of voltage-gated sodium channels.
Toxicon. 2016 Mar 1;111:13-21. doi: 10.1016/j.toxicon.2015.12.009. Epub 2015 Dec 23.
8
The Emerging Role of Voltage-Gated Sodium Channels in Tumor Biology.
Front Oncol. 2019 Mar 6;9:124. doi: 10.3389/fonc.2019.00124. eCollection 2019.
10
Neurotoxins and their binding areas on voltage-gated sodium channels.
Front Pharmacol. 2011 Nov 9;2:71. doi: 10.3389/fphar.2011.00071. eCollection 2011.

引用本文的文献

1
Genetic and Functional Differences between Duplicated Zebrafish Genes for Human .
Cells. 2022 Jan 28;11(3):454. doi: 10.3390/cells11030454.
2
The Na1.7 Channel Subtype as an Antinociceptive Target for Spider Toxins in Adult Dorsal Root Ganglia Neurons.
Front Pharmacol. 2018 Sep 4;9:1000. doi: 10.3389/fphar.2018.01000. eCollection 2018.

本文引用的文献

1
Neurotoxins and their binding areas on voltage-gated sodium channels.
Front Pharmacol. 2011 Nov 9;2:71. doi: 10.3389/fphar.2011.00071. eCollection 2011.
2
N- and O-linked glycosylation coordinate cell-surface localization of a cardiac potassium channel.
J Physiol. 2011 Oct 1;589(Pt 19):4647-8. doi: 10.1113/jphysiol.2011.218263.
3
Exploring the obscure profiles of pharmacological binding sites on voltage-gated sodium channels by BmK neurotoxins.
Protein Cell. 2011 Jun;2(6):437-44. doi: 10.1007/s13238-011-1064-8. Epub 2011 Jul 12.
4
Importance of glycosylation on function of a potassium channel in neuroblastoma cells.
PLoS One. 2011 Apr 26;6(4):e19317. doi: 10.1371/journal.pone.0019317.
7
Role of extracellular sialic acid in regulation of neuronal and network excitability in the rat hippocampus.
J Neurosci. 2007 Oct 24;27(43):11587-94. doi: 10.1523/JNEUROSCI.2033-07.2007.
8
Effects of BmK AS on Nav1.2 expressed in Xenopus laevis oocytes.
Cell Biol Toxicol. 2008 Apr;24(2):143-9. doi: 10.1007/s10565-007-9023-0. Epub 2007 Aug 3.
9
Peptides of arachnid venoms with insecticidal activity targeting sodium channels.
Comp Biochem Physiol C Toxicol Pharmacol. 2007 Jul-Aug;146(1-2):264-279. doi: 10.1016/j.cbpc.2006.10.010. Epub 2006 Oct 27.
10
Differential sialylation modulates voltage-gated Na+ channel gating throughout the developing myocardium.
J Gen Physiol. 2006 Mar;127(3):253-65. doi: 10.1085/jgp.200509423. Epub 2006 Feb 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验