Department of Biochemistry and Molecular Biology, Monash University, Clayton, Melbourne, VIC 3800 Australia.
Cell Rep. 2012 Mar 29;1(3):185-90. doi: 10.1016/j.celrep.2012.02.012. Epub 2012 Mar 8.
Plasminogen is the proenzyme precursor of the primary fibrinolytic protease plasmin. Circulating plasminogen, which comprises a Pan-apple (PAp) domain, five kringle domains (KR1-5), and a serine protease (SP) domain, adopts a closed, activation-resistant conformation. The kringle domains mediate interactions with fibrin clots and cell-surface receptors. These interactions trigger plasminogen to adopt an open form that can be cleaved and converted to plasmin by tissue-type and urokinase-type plasminogen activators. Here, the structure of closed plasminogen reveals that the PAp and SP domains, together with chloride ions, maintain the closed conformation through interactions with the kringle array. Differences in glycosylation alter the position of KR3, although in all structures the loop cleaved by plasminogen activators is inaccessible. The ligand-binding site of KR1 is exposed and likely governs proenzyme recruitment to targets. Furthermore, analysis of our structure suggests that KR5 peeling away from the PAp domain may initiate plasminogen conformational change.
纤溶酶原是主要纤维蛋白溶酶原纤溶酶的酶原前体。循环中的纤溶酶原由 Pan 苹果(PAp)结构域、五个kringle 结构域(KR1-5)和丝氨酸蛋白酶(SP)结构域组成,采用封闭的、不易激活的构象。kringle 结构域介导与纤维蛋白凝块和细胞表面受体的相互作用。这些相互作用促使纤溶酶原采用开放形式,可被组织型和尿激酶型纤溶酶原激活剂切割并转化为纤溶酶。在这里,封闭纤溶酶原的结构揭示了 PAp 和 SP 结构域以及氯离子通过与 kringle 阵列的相互作用来维持封闭构象。糖基化的差异改变了 KR3 的位置,尽管在所有结构中,纤溶酶原激活剂切割的环都无法接近。KR1 的配体结合位点暴露,可能控制酶原与靶标的募集。此外,对我们结构的分析表明,KR5 从 PAp 结构域上的剥落可能会启动纤溶酶原构象变化。