Sleep Laboratory, Psychiatric Laboratory Research, Psychiatric Department, Erasme Academic Hospital, Free University of Brussels (ULB), Brussels, Belgium.
Transl Psychiatry. 2011 Jul 26;1(7):e27. doi: 10.1038/tp.2011.23.
Major depression affects multiple physiologic systems. Therefore, analysis of signals that reflect integrated function may be useful in probing dynamical changes in this syndrome. Increasing evidence supports the conceptual framework that complex variability is a marker of healthy, adaptive control mechanisms and that dynamical complexity decreases with aging and disease. We tested the hypothesis that heart rate (HR) dynamics in non-medicated, young to middle-aged males during an acute major depressive episode would exhibit lower complexity compared with healthy counterparts. We analyzed HR time series, a neuroautonomically regulated signal, during sleep, using the multiscale entropy method. Our results show that the complexity of the HR dynamics is significantly lower for depressed than for non-depressed subjects for the entire night (P<0.02) and combined sleep stages 1 and 2 (P<0.02). These findings raise the possibility of using the complexity of physiologic signals as the basis of novel dynamical biomarkers of depression.
重度抑郁症影响多个生理系统。因此,分析反映综合功能的信号可能有助于探究该综合征的动态变化。越来越多的证据支持这样一种概念框架,即复杂的可变性是健康、适应性控制机制的标志,而且动态复杂性随着衰老和疾病而降低。我们检验了这样一个假设,即在急性重度抑郁发作期间,非用药的年轻至中年男性的心率(HR)动态表现出与健康对照组相比复杂性降低。我们使用多尺度熵方法分析了 HR 时间序列,这是一种神经自主调节信号。我们的结果表明,在整个夜间(P<0.02)和合并的睡眠阶段 1 和 2(P<0.02)期间,抑郁组的 HR 动力学复杂性明显低于非抑郁组。这些发现提出了一种可能性,即使用生理信号的复杂性作为抑郁症新型动态生物标志物的基础。