Suppr超能文献

脑电图熵是否可作为阿尔茨海默病的有用测量指标?

Is EEG Entropy a Useful Measure for Alzheimer's Disease?

机构信息

Facultad de Medicina, Universidad Nacional de Colombia,111321 Bogotá, Colombia.

Facultad de Medicina, Universidad de La Sabana, 250001 Chía, Cundinamarca, Colombia.

出版信息

Actas Esp Psiquiatr. 2024 Jun;52(3):347-364. doi: 10.62641/aep.v52i3.1632.

Abstract

BACKGROUND

The number of individuals diagnosed with Alzheimer's disease (AD) has increased, and it is estimated to continue rising in the coming years. The diagnosis of this disease is challenging due to variations in onset and course, its diverse clinical manifestations, and the indications for measuring deposit biomarkers. Hence, there is a need to develop more precise and less invasive diagnostic tools. Multiple studies have considered using electroencephalography (EEG) entropy measures as an indicator of the onset and course of AD. Entropy is deemed suitable as a potential indicator based on the discovery that variations in its complexity can be associated with specific pathologies such as AD.

METHODOLOGY

Following PRISMA guidelines, a literature search was conducted in 4 scientific databases, and 40 articles were analyzed after discarding and filtering.

RESULTS

There is a diversity in entropy measures; however, Sample Entropy (SampEn) and Multiscale Entropy (MSE) are the most widely used (21/40). In general, it is found that when comparing patients with controls, patients exhibit lower entropy (20/40) in various areas. Findings of correlation with the level of cognitive decline are less consistent, and with neuropsychiatric symptoms (2/40) or treatment response less explored (2/40), although most studies show lower entropy with greater severity. Machine learning-based studies show good discrimination capacity.

CONCLUSIONS

There is significant difficulty in comparing multiple studies due to their heterogeneity; however, changes in Multiscale Entropy (MSE) scales or a decrease in entropy levels are considered useful for determining the presence of AD and measuring its severity.

摘要

背景

被诊断患有阿尔茨海默病(AD)的人数不断增加,预计未来几年还会继续上升。由于发病和病程的变化、临床表现的多样性以及沉积生物标志物测量的指征,这种疾病的诊断具有挑战性。因此,需要开发更精确和侵入性更小的诊断工具。多项研究已经考虑使用脑电图(EEG)熵测量作为 AD 发病和病程的指标。基于复杂性变化与 AD 等特定病理学相关的发现,熵被认为是一种潜在的合适指标。

方法

根据 PRISMA 指南,在 4 个科学数据库中进行了文献检索,经过剔除和过滤后分析了 40 篇文章。

结果

熵测量值存在多样性,但样本熵(SampEn)和多尺度熵(MSE)是使用最广泛的(21/40)。一般来说,当比较患者和对照组时,患者在各个区域的熵值较低(20/40)。与认知衰退水平相关的发现不太一致,与神经精神症状(2/40)或治疗反应(2/40)的相关性也较少得到探索,尽管大多数研究显示严重程度较高的患者熵值较低。基于机器学习的研究显示出良好的区分能力。

结论

由于存在异质性,比较多项研究具有很大的难度;然而,多尺度熵(MSE)的变化或熵水平的降低被认为有助于确定 AD 的存在并衡量其严重程度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5041/11194159/63e582db0e0a/ActEsp-52-3-347-364-F1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验