College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China.
J Chem Inf Model. 2012 Aug 27;52(8):2132-8. doi: 10.1021/ci300185c. Epub 2012 Aug 10.
Effects of the channel length and membrane thickness on the water permeation through the transmembrane cyclic octa-peptide nanotubes (octa-PNTs) have been studied by molecular dynamics (MD) simulations. The water osmotic permeability (p(f)) through the PNTs of k × (WL)(4)/POPE (1-palmitoyl-2-oleoyl-glycerophosphoethanolamine; k = 6, 7, 8, 9, and 10) was found to decay with the channel length (L) along the axis (~L(-2.0)). Energetic analysis showed that a series of water binding sites exist in these transmembrane PNTs, with the barriers of ~3k(B)T, which elucidates the tendency of p(f) well. Water diffusion permeability (p(d)) exhibits a relationship of ~L(-1.8), which results from the novel 1-2-1-2 structure of water chain in such confined nanolumens. In the range of simulation accuracy, the ratio (p(f)/p(d)) of the water osmotic and diffusion permeability is approximately a constant. MD simulations of water permeation through the transmembrane PNTs of 8 × (WL)(4)/octane with the different octane membrane thickness revealed that the water osmotic and diffusion permeability (p(f) and p(d)) are both independent of the octane membrane thickness, confirmed by the weak and nearly same interactions between the channel water and octane membranes with the different thickness. The results may be helpful for revealing the permeation mechanisms of biological water channels and designing artificial nanochannels.
通道长度和膜厚对跨膜环状八肽纳米管(octa-PNTs)中水渗透的影响通过分子动力学(MD)模拟进行了研究。通过 k×(WL)(4)/POPE(1-棕榈酰-2-油酰基甘油磷酸乙醇胺;k=6、7、8、9 和 10)的 PNTs 的水渗透系数(p(f))发现随着通道长度(L)沿轴向衰减(L(-2.0))。能量分析表明,一系列水结合位点存在于这些跨膜 PNTs 中,具有约 3k(B)T 的势垒,这很好地解释了 p(f)的趋势。水扩散渗透率(p(d))表现出L(-1.8)的关系,这是由于水链在这种受限纳米腔中具有新颖的 1-2-1-2 结构。在模拟精度范围内,水渗透的渗透压(p(f))和扩散渗透率(p(d))的比值约为常数。通过不同正辛烷膜厚的 8×(WL)(4)/正辛烷跨膜 PNTs 的水渗透 MD 模拟表明,水渗透和扩散渗透率(p(f)和 p(d))都与正辛烷膜厚无关,这通过通道水与不同厚度的正辛烷膜之间的弱且几乎相同的相互作用得到证实。结果可能有助于揭示生物水通道的渗透机制和设计人工纳米通道。