Bitok J Kipchirchir, Meyers Caren Freel
Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.
ACS Chem Biol. 2012 Oct 19;7(10):1702-10. doi: 10.1021/cb300243w. Epub 2012 Aug 6.
There is significant progress toward understanding catalysis throughout the essential MEP pathway to isoprenoids in human pathogens; however, little is known about pathway regulation. The present study begins by testing the hypothesis that isoprenoid biosynthesis is regulated via feedback inhibition of the fifth enzyme cyclodiphosphate synthase IspF by downstream isoprenoid diphosphates. Here, we demonstrate recombinant E. coli IspF is not inhibited by downstream metabolites isopentenyl diphosphate (IDP), dimethylallyl diphosphate (DMADP), geranyl diphosphate (GDP), and farnesyl diphosphate (FDP) under standard assay conditions. However, 2C-methyl-d-erythritol 4-phosphate (MEP), the product of reductoisomerase IspC and first committed MEP pathway intermediate, activates and sustains this enhanced IspF activity, and the IspF-MEP complex is inhibited by FDP. We further show that the methylerythritol scaffold itself, which is unique to this pathway, drives the activation and stabilization of active IspF. Our results suggest a novel feed-forward regulatory mechanism for 2C-methyl-d-erythritol 2,4-cyclodiphosphate (MEcDP) production and support an isoprenoid biosynthesis regulatory mechanism via feedback inhibition of the IspF-MEP complex by FDP. The results have important implications for development of inhibitors against the IspF-MEP complex, which may be the physiologically relevant form of the enzyme.
在了解人类病原体中类异戊二烯基本MEP途径的催化作用方面已取得重大进展;然而,对于该途径的调控却知之甚少。本研究首先检验了这样一个假设,即类异戊二烯生物合成是通过下游类异戊二烯二磷酸对第五种酶环二磷酸合酶IspF的反馈抑制来调节的。在此,我们证明在标准测定条件下,重组大肠杆菌IspF不受下游代谢物异戊烯基二磷酸(IDP)、二甲基烯丙基二磷酸(DMADP)、香叶基二磷酸(GDP)和法呢基二磷酸(FDP)的抑制。然而,还原异构酶IspC的产物以及MEP途径的首个关键中间产物2C-甲基-D-赤藓糖醇4-磷酸(MEP),可激活并维持这种增强的IspF活性,并且IspF-MEP复合物会被FDP抑制。我们进一步表明,该途径特有的甲基赤藓糖醇支架本身可驱动活性IspF的激活和稳定。我们的结果表明了一种针对2C-甲基-D-赤藓糖醇2,4-环二磷酸(MEcDP)生成的新型前馈调节机制,并支持通过FDP对IspF-MEP复合物的反馈抑制来实现类异戊二烯生物合成的调节机制。这些结果对于开发针对IspF-MEP复合物的抑制剂具有重要意义,而该复合物可能是该酶的生理相关形式。