Valencia Alfonso, Hidalgo Manuel
Spanish National Cancer Research Centre (CNIO), Calle Melchor Fernández Almagro, 3, E-28029 Madrid, Spain.
Genome Med. 2012 Jul 30;4(7):61. doi: 10.1186/gm362. eCollection 2012.
Progress in genomics has raised expectations in many fields, and particularly in personalized cancer research. The new technologies available make it possible to combine information about potential disease markers, altered function and accessible drug targets, which, coupled with pathological and medical information, will help produce more appropriate clinical decisions. The accessibility of such experimental techniques makes it all the more necessary to improve and adapt computational strategies to the new challenges. This review focuses on the critical issues associated with the standard pipeline, which includes: DNA sequencing analysis; analysis of mutations in coding regions; the study of genome rearrangements; extrapolating information on mutations to the functional and signaling level; and predicting the effects of therapies using mouse tumor models. We describe the possibilities, limitations and future challenges of current bioinformatics strategies for each of these issues. Furthermore, we emphasize the need for the collaboration between the bioinformaticians who implement the software and use the data resources, the computational biologists who develop the analytical methods, and the clinicians, the systems' end users and those ultimately responsible for taking medical decisions. Finally, the different steps in cancer genome analysis are illustrated through examples of applications in cancer genome analysis.
基因组学的进展在许多领域引发了期望,尤其是在个性化癌症研究方面。现有的新技术使得整合有关潜在疾病标志物、功能改变和可及药物靶点的信息成为可能,这些信息与病理和医学信息相结合,将有助于做出更恰当的临床决策。此类实验技术的可及性使得改进和调整计算策略以应对新挑战变得更加必要。本综述聚焦于与标准流程相关的关键问题,其中包括:DNA测序分析;编码区突变分析;基因组重排研究;将突变信息外推至功能和信号传导水平;以及使用小鼠肿瘤模型预测治疗效果。我们描述了针对上述每个问题的当前生物信息学策略的可能性、局限性和未来挑战。此外,我们强调实施软件并使用数据资源的生物信息学家、开发分析方法的计算生物学家以及临床医生(系统的最终用户和最终负责做出医疗决策的人员)之间开展合作的必要性。最后,通过癌症基因组分析中的应用实例说明了癌症基因组分析的不同步骤。