Suppr超能文献

形状驱动的弯曲生物组织中的连通刚性转变。

Shape-driven confluent rigidity transition in curved biological tissues.

机构信息

Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada.

Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada; Division of Orthopaedic Surgery, The Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada.

出版信息

Biophys J. 2023 Nov 7;122(21):4264-4273. doi: 10.1016/j.bpj.2023.10.001. Epub 2023 Oct 5.

Abstract

Collective cell motions underlie structure formation during embryonic development. Tissues exhibit emergent multicellular characteristics such as jamming, rigidity transitions, and glassy dynamics, but there remain questions about how those tissue-scale dynamics derive from local cell-level properties. Specifically, there has been little consideration of the interplay between local tissue geometry and cellular properties influencing larger-scale tissue behaviors. Here, we consider a simple two-dimensional computational vertex model for confluent tissue monolayers, which exhibits a rigidity phase transition controlled by the shape index (ratio of perimeter to square root area) of cells, on surfaces of constant curvature. We show that the critical point for the rigidity transition is a function of curvature such that positively curved systems are likely to be in a less rigid, more fluid, phase. Likewise, negatively curved systems (saddles) are likely to be in a more rigid, less fluid, phase. A phase diagram we generate for the curvature and shape index constitutes a testable prediction from the model. The curvature dependence is interesting because it suggests a natural explanation for more dynamic tissue remodeling and facile growth in regions of higher surface curvature. Conversely, we would predict stability at the base of saddle-shaped budding structures without invoking the need for biochemical or other physical differences. This concept has potential ramifications for our understanding of morphogenesis of budding and branching structures.

摘要

集体细胞运动是胚胎发育过程中结构形成的基础。组织表现出突现的多细胞特征,如堵塞、刚性转变和玻璃态动力学,但仍有一些问题是关于这些组织尺度动力学如何从局部细胞水平特性中得出的。具体来说,很少考虑局部组织几何形状和细胞特性之间的相互作用如何影响更大尺度的组织行为。在这里,我们考虑了一个简单的二维计算顶点模型,用于共形组织单层,该模型在具有恒定曲率的表面上表现出由细胞的形状指数(周长与平方根面积的比值)控制的刚性相变。我们表明,刚性转变的临界点是曲率的函数,使得正曲率系统更有可能处于刚性较低、流动性较高的相。同样,负曲率系统(鞍点)更可能处于刚性较高、流动性较低的相。我们为曲率和形状指数生成的相图构成了模型的可测试预测。曲率依赖性很有趣,因为它为在更高表面曲率区域更动态的组织重塑和易于生长提供了自然解释。相反,我们预测在没有涉及生化或其他物理差异的情况下,鞍形芽状结构的基部会很稳定。这个概念对于我们理解芽状和分支结构的形态发生有潜在的影响。

相似文献

1
Shape-driven confluent rigidity transition in curved biological tissues.
Biophys J. 2023 Nov 7;122(21):4264-4273. doi: 10.1016/j.bpj.2023.10.001. Epub 2023 Oct 5.
2
Finite elasticity of the vertex model and its role in rigidity of curved cellular tissues.
Soft Matter. 2023 Oct 18;19(40):7744-7752. doi: 10.1039/d3sm00874f.
3
Embryonic Tissues as Active Foams.
Nat Phys. 2021 Jul;17:859-866. doi: 10.1038/s41567-021-01215-1. Epub 2021 Apr 12.
4
A shape-driven reentrant jamming transition in confluent monolayers of synthetic cell-mimics.
Nat Commun. 2024 Jul 5;15(1):5645. doi: 10.1038/s41467-024-49044-z.
5
A two-dimensional vertex model for curvy cell-cell interfaces at the subcellular scale.
J R Soc Interface. 2024 Aug;21(217):20240193. doi: 10.1098/rsif.2024.0193. Epub 2024 Aug 28.
6
Motility-driven glass and jamming transitions in biological tissues.
Phys Rev X. 2016 Apr-Jun;6(2). doi: 10.1103/PhysRevX.6.021011. Epub 2016 Apr 21.
7
Riding the cell jamming boundary: Geometry, topology, and phase of human corneal endothelium.
Exp Eye Res. 2018 Jul;172:171-180. doi: 10.1016/j.exer.2018.04.007. Epub 2018 Apr 12.
8
Surface tension determines tissue shape and growth kinetics.
Sci Adv. 2019 Sep 11;5(9):eaav9394. doi: 10.1126/sciadv.aav9394. eCollection 2019 Sep.
10
Are cell jamming and unjamming essential in tissue development?
Cells Dev. 2021 Dec;168:203727. doi: 10.1016/j.cdev.2021.203727. Epub 2021 Aug 4.

引用本文的文献

1
Vertex models capturing subcellular scales in epithelial tissues.
PLoS Comput Biol. 2025 May 21;21(5):e1012993. doi: 10.1371/journal.pcbi.1012993. eCollection 2025 May.
2
Epithelial Layer Fluidization by Curvature-Induced Unjamming.
Phys Rev Lett. 2025 Apr 4;134(13):138402. doi: 10.1103/PhysRevLett.134.138402.

本文引用的文献

1
Embryonic Tissues as Active Foams.
Nat Phys. 2021 Jul;17:859-866. doi: 10.1038/s41567-021-01215-1. Epub 2021 Apr 12.
2
The complex three-dimensional organization of epithelial tissues.
Development. 2021 Jan 6;148(1):dev195669. doi: 10.1242/dev.195669.
3
IRX3/5 regulate mitotic chromatid segregation and limb bud shape.
Development. 2020 Oct 5;147(19):dev180042. doi: 10.1242/dev.180042.
4
Anisotropy links cell shapes to tissue flow during convergent extension.
Proc Natl Acad Sci U S A. 2020 Jun 16;117(24):13541-13551. doi: 10.1073/pnas.1916418117. Epub 2020 May 28.
5
Branching morphogenesis.
Development. 2020 May 22;147(10):dev184499. doi: 10.1242/dev.184499.
6
8
Fluidization-mediated tissue spreading by mitotic cell rounding and non-canonical Wnt signalling.
Nat Cell Biol. 2019 Feb;21(2):169-178. doi: 10.1038/s41556-018-0247-4. Epub 2018 Dec 17.
9
Strain-triggered mechanical feedback in self-organizing optic-cup morphogenesis.
Sci Adv. 2018 Nov 21;4(11):eaau1354. doi: 10.1126/sciadv.aau1354. eCollection 2018 Nov.
10
Counter-rotational cell flows drive morphological and cell fate asymmetries in mammalian hair follicles.
Nat Cell Biol. 2018 May;20(5):541-552. doi: 10.1038/s41556-018-0082-7. Epub 2018 Apr 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验