Suppr超能文献

用于高通量抗真菌药物筛选的白色念珠菌生物膜芯片(CaBChip)。

Candida albicans biofilm chip (CaBChip) for high-throughput antifungal drug screening.

作者信息

Srinivasan Anand, Lopez-Ribot Jose L, Ramasubramanian Anand K

机构信息

Department of Biomedical Engineering, University of Texas at San Antonio.

出版信息

J Vis Exp. 2012 Jul 18(65):e3845. doi: 10.3791/3845.

Abstract

Candida albicans remains the main etiological agent of candidiasis, which currently represents the fourth most common nosocomial bloodstream infection in US hospitals. These opportunistic infections pose a growing threat for an increasing number of compromised individuals, and carry unacceptably high mortality rates. This is in part due to the limited arsenal of antifungal drugs, but also to the emergence of resistance against the most commonly used antifungal agents. Further complicating treatment is the fact that a majority of manifestations of candidiasis are associated with the formation of biofilms, and cells within these biofilms show increased levels of resistance to most clinically-used antifungal agents. Here we describe the development of a high-density microarray that consists of C. albicans nano-biofilms, which we have named CaBChip. Briefly, a robotic microarrayer is used to print yeast cells of C. albicans onto a solid substrate. During printing, the yeast cells are enclosed in a three dimensional matrix using a volume as low as 50 nL and immobilized on a glass substrate with a suitable coating. After initial printing, the slides are incubated at 37 °C for 24 hours to allow for biofilm development. During this period the spots grow into fully developed "nano-biofilms" that display typical structural and phenotypic characteristics associated with mature C. albicans biofilms (i.e. morphological complexity, three dimensional architecture and drug resistance). Overall, the CaBChip is composed of ~750 equivalent and spatially distinct biofilms; with the additional advantage that multiple chips can be printed and processed simultaneously. Cell viability is estimated by measuring the fluorescent intensity of FUN1 metabolic stain using a microarray scanner. This fungal chip is ideally suited for use in true high-throughput screening for antifungal drug discovery. Compared to current standards (i.e. the 96-well microtiter plate model of biofilm formation), the main advantages of the fungal biofilm chip are automation, miniaturization, savings in amount and cost of reagents and analyses time, as well as the elimination of labor intensive steps. We believe that such chip will significantly speed up the antifungal drug discovery process.

摘要

白色念珠菌仍然是念珠菌病的主要病原体,目前在美国医院中它是第四大常见的医院获得性血流感染病原体。这些机会性感染对越来越多的免疫功能低下个体构成了日益严重的威胁,并且死亡率高得令人难以接受。部分原因是抗真菌药物种类有限,但也归因于对最常用抗真菌药物产生了耐药性。使治疗更加复杂的是,大多数念珠菌病表现都与生物膜的形成有关,并且这些生物膜中的细胞对大多数临床使用的抗真菌药物的耐药性增强。在此,我们描述了一种由白色念珠菌纳米生物膜组成的高密度微阵列的开发,我们将其命名为CaBChip。简而言之,使用机器人微阵列仪将白色念珠菌的酵母细胞打印到固体基质上。在打印过程中,酵母细胞被包裹在低至50 nL的三维基质中,并固定在具有合适涂层的玻璃基质上。初次打印后,将载玻片在37°C下孵育24小时以促进生物膜形成。在此期间,斑点生长成完全发育的“纳米生物膜”,其显示出与成熟白色念珠菌生物膜相关的典型结构和表型特征(即形态复杂性、三维结构和耐药性)。总体而言,CaBChip由约750个等效且空间上不同的生物膜组成;另外一个优点是可以同时打印和处理多个芯片。通过使用微阵列扫描仪测量FUN1代谢染色的荧光强度来估计细胞活力。这种真菌芯片非常适合用于真正的高通量抗真菌药物筛选。与当前标准(即生物膜形成的96孔微量滴定板模型)相比,真菌生物膜芯片的主要优点是自动化、小型化、节省试剂用量和成本以及分析时间,同时消除了劳动强度大的步骤。我们相信这样的芯片将显著加快抗真菌药物的发现过程。

相似文献

本文引用的文献

4
Three-dimensional cellular microarray for high-throughput toxicology assays.用于高通量毒理学检测的三维细胞微阵列。
Proc Natl Acad Sci U S A. 2008 Jan 8;105(1):59-63. doi: 10.1073/pnas.0708756105. Epub 2007 Dec 26.
6
Fungal biofilms and drug resistance.真菌生物膜与耐药性。
Emerg Infect Dis. 2004 Jan;10(1):14-9. doi: 10.3201/eid1001.030119.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验