Suppr超能文献

高通量纳米生物膜微阵列用于抗真菌药物发现。

High-throughput nano-biofilm microarray for antifungal drug discovery.

机构信息

Department of Biomedical Engineering, The University of Texas at San Antonio, San Antonio, Texas, USA.

出版信息

mBio. 2013 Jun 25;4(4):e00331-13. doi: 10.1128/mBio.00331-13.

Abstract

UNLABELLED

Micro- and nanoscale technologies have radically transformed biological research from genomics to tissue engineering, with the relative exception of microbial cell culture, which is still largely performed in microtiter plates and petri dishes. Here, we present nanoscale culture of the opportunistic fungal pathogen Candida albicans on a microarray platform. The microarray consists of 1,200 individual cultures of 30 nl of C. albicans biofilms ("nano-biofilms") encapsulated in an inert alginate matrix. We demonstrate that these nano-biofilms are similar to conventional macroscopic biofilms in their morphological, architectural, growth, and phenotypic characteristics. We also demonstrate that the nano-biofilm microarray is a robust and efficient tool for accelerating the drug discovery process: (i) combinatorial screening against a collection of 28 antifungal compounds in the presence of immunosuppressant FK506 (tacrolimus) identified six drugs that showed synergistic antifungal activity, and (ii) screening against the NCI challenge set small-molecule library identified three heretofore-unknown hits. This cell-based microarray platform allows for miniaturization of microbial cell culture and is fully compatible with other high-throughput screening technologies.

IMPORTANCE

Microorganisms are typically still grown in petri dishes, test tubes, and Erlenmeyer flasks in spite of the latest advances in miniaturization that have benefitted other allied research fields, including genomics and proteomics. Culturing microorganisms in small scale can be particularly valuable in cutting down time, cost, and reagent usage. This paper describes the development, characterization, and application of nanoscale culture of an opportunistic fungal pathogen, Candida albicans. Despite a more than 2,000-fold reduction in volume, the growth characteristics and drug response profiles obtained from the nanoscale cultures were comparable to the industry standards. The platform also enabled rapid identification of new drug candidates that were effective against C. albicans biofilms, which are a major cause of mortality in hospital-acquired infections.

摘要

未加标签

从基因组学到组织工程学,微纳技术彻底改变了生物学研究,微生物细胞培养相对除外,该技术仍主要在微孔板和培养皿中进行。在这里,我们提出了在微阵列平台上对机会性病原体白色念珠菌进行纳米级培养的方法。该微阵列由 1200 个 30 nl 的白色念珠菌生物膜(“纳米生物膜”)的单独培养物组成,这些生物膜被封装在惰性藻酸盐基质中。我们证明,这些纳米生物膜在形态、结构、生长和表型特征方面与传统的宏观生物膜相似。我们还证明,纳米生物膜微阵列是加速药物发现过程的强大而有效的工具:(i)在免疫抑制剂 FK506(他克莫司)存在下对 28 种抗真菌化合物的组合筛选确定了六种具有协同抗真菌活性的药物,(ii)对 NCI 挑战集小分子文库的筛选确定了三种以前未知的命中药物。这种基于细胞的微阵列平台允许微生物细胞培养的微型化,并且完全与其他高通量筛选技术兼容。

重要性

尽管最新的小型化技术进步使基因组学和蛋白质组学等其他相关研究领域受益,但微生物通常仍在培养皿、试管和摇瓶中生长。在减少时间、成本和试剂使用方面,在小规模下培养微生物可能特别有价值。本文描述了一种机会性病原体白色念珠菌的纳米级培养的开发、表征和应用。尽管体积减少了 2000 多倍,但从纳米级培养物中获得的生长特征和药物反应谱与行业标准相当。该平台还能够快速识别对医院获得性感染中主要致死原因的白色念珠菌生物膜有效的新候选药物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68c4/3697808/2c68db1c56a5/mbo0031315450001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验