School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, Australia.
PLoS One. 2012;7(7):e40719. doi: 10.1371/journal.pone.0040719. Epub 2012 Jul 25.
Lhx3 is a LIM-homeodomain (LIM-HD) transcription factor that regulates neural cell subtype specification and pituitary development in vertebrates, and mutations in this protein cause combined pituitary hormone deficiency syndrome (CPHDS). The recently published structures of Lhx3 in complex with each of two key protein partners, Isl1 and Ldb1, provide an opportunity to understand the effect of mutations and posttranslational modifications on key protein-protein interactions. Here, we use small-angle X-ray scattering of an Ldb1-Lhx3 complex to confirm that in solution the protein is well represented by our previously determined NMR structure as an ensemble of conformers each comprising two well-defined halves (each made up of LIM domain from Lhx3 and the corresponding binding motif in Ldb1) with some flexibility between the two halves. NMR analysis of an Lhx3 mutant that causes CPHDS, Lhx3(Y114C), shows that the mutation does not alter the zinc-ligation properties of Lhx3, but appears to cause a structural rearrangement of the hydrophobic core of the LIM2 domain of Lhx3 that destabilises the domain and/or reduces the affinity of Lhx3 for both Ldb1 and Isl1. Thus the mutation would affect the formation of Lhx3-containing transcription factor complexes, particularly in the pituitary gland where these complexes are required for the production of multiple pituitary cell types and hormones.
Lhx3 是一种 LIM-同源域(LIM-HD)转录因子,在脊椎动物中调节神经细胞亚型特化和垂体发育,该蛋白的突变会导致联合垂体激素缺乏综合征(CPHDS)。最近发表的 Lhx3 与两个关键蛋白伴侣 Isl1 和 Ldb1 各自形成复合物的结构,为理解突变和翻译后修饰对关键蛋白-蛋白相互作用的影响提供了机会。在这里,我们使用 Ldb1-Lhx3 复合物的小角度 X 射线散射来证实,在溶液中,该蛋白很好地由我们之前确定的 NMR 结构来表示,作为由两个定义明确的部分(每个部分由 Lhx3 的 LIM 结构域和 Ldb1 中的相应结合基序组成)组成的构象混合物,两个部分之间具有一定的灵活性。对引起 CPHDS 的 Lhx3 突变体(Lhx3(Y114C))的 NMR 分析表明,该突变不会改变 Lhx3 的锌结合特性,但似乎会导致 Lhx3 的 LIM2 结构域的疏水区的结构重排,从而使该结构域失稳和/或降低 Lhx3 与 Ldb1 和 Isl1 的亲和力。因此,该突变会影响含有 Lhx3 的转录因子复合物的形成,特别是在垂体中,这些复合物对于多种垂体细胞类型和激素的产生是必需的。