Suppr超能文献

通过数学规划识别响应模块:在芽殖酵母细胞周期中的应用。

Identifying responsive modules by mathematical programming: an application to budding yeast cell cycle.

机构信息

Key Laboratory of Systems Biology, SIBS-Novo Nordisk Translational Research Centre for PreDiabetes, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.

出版信息

PLoS One. 2012;7(7):e41854. doi: 10.1371/journal.pone.0041854. Epub 2012 Jul 25.

Abstract

High-throughput biological data offer an unprecedented opportunity to fully characterize biological processes. However, how to extract meaningful biological information from these datasets is a significant challenge. Recently, pathway-based analysis has gained much progress in identifying biomarkers for some phenotypes. Nevertheless, these so-called pathway-based methods are mainly individual-gene-based or molecule-complex-based analyses. In this paper, we developed a novel module-based method to reveal causal or dependent relations between network modules and biological phenotypes by integrating both gene expression data and protein-protein interaction network. Specifically, we first formulated the identification problem of the responsive modules underlying biological phenotypes as a mathematical programming model by exploiting phenotype difference, which can also be viewed as a multi-classification problem. Then, we applied it to study cell-cycle process of budding yeast from microarray data based on our biological experiments, and identified important phenotype- and transition-based responsive modules for different stages of cell-cycle process. The resulting responsive modules provide new insight into the regulation mechanisms of cell-cycle process from a network viewpoint. Moreover, the identification of transition modules provides a new way to study dynamical processes at a functional module level. In particular, we found that the dysfunction of a well-known module and two new modules may directly result in cell cycle arresting at S phase. In addition to our biological experiments, the identified responsive modules were also validated by two independent datasets on budding yeast cell cycle.

摘要

高通量生物数据为全面描述生物过程提供了前所未有的机会。然而,如何从这些数据集提取有意义的生物信息是一个重大挑战。最近,基于通路的分析在识别某些表型的生物标志物方面取得了很大进展。然而,这些所谓的基于通路的方法主要是基于单个基因或分子复合物的分析。在本文中,我们开发了一种新的基于模块的方法,通过整合基因表达数据和蛋白质-蛋白质相互作用网络,揭示网络模块与生物表型之间的因果或依赖关系。具体来说,我们首先通过利用表型差异,将识别生物表型下响应模块的问题表述为一个数学规划模型,也可以将其视为一个多分类问题。然后,我们将其应用于基于我们的生物学实验的 budding yeast 细胞周期的微阵列数据,识别出不同细胞周期阶段的重要表型和基于转换的响应模块。所得到的响应模块从网络角度为细胞周期过程的调控机制提供了新的见解。此外,转换模块的识别为在功能模块水平上研究动态过程提供了一种新方法。特别是,我们发现一个众所周知的模块和两个新模块的功能障碍可能直接导致细胞周期停滞在 S 期。除了我们的生物学实验,所识别的响应模块也通过 budding yeast 细胞周期的两个独立数据集进行了验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2504/3405030/3e980b4e3ad9/pone.0041854.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验