Suppr超能文献

整合多种类型的数据以预测新的细胞周期相关基因。

Integrating multiple types of data to predict novel cell cycle-related genes.

作者信息

Wang Lin, Hou Lin, Qian Minping, Li Fangting, Deng Minghua

机构信息

Center for Theoretical Biology, Peking University, Beijing, China.

出版信息

BMC Syst Biol. 2011 Jun 20;5 Suppl 1(Suppl 1):S9. doi: 10.1186/1752-0509-5-S1-S9.

Abstract

BACKGROUND

Cellular functions depend on genetic, physical and other types of interactions. As such, derived interaction networks can be utilized to discover novel genes involved in specific biological processes. Epistatic Miniarray Profile, or E-MAP, which is an experimental platform that measures genetic interactions on a genome-wide scale, has successfully recovered known pathways and revealed novel protein complexes in Saccharomyces cerevisiae (budding yeast).

RESULTS

By combining E-MAP data with co-expression data, we first predicted a potential cell cycle related gene set. Using Gene Ontology (GO) function annotation as a benchmark, we demonstrated that the prediction by combining microarray and E-MAP data is generally >50% more accurate in identifying co-functional gene pairs than the prediction using either data source alone. We also used transcription factor (TF)-DNA binding data (Chip-chip) and protein phosphorylation data to construct a local cell cycle regulation network based on potential cell cycle related gene set we predicted. Finally, based on the E-MAP screening with 48 cell cycle genes crossing 1536 library strains, we predicted four unknown genes (YPL158C, YPR174C, YJR054W, and YPR045C) as potential cell cycle genes, and analyzed them in detail.

CONCLUSION

By integrating E-MAP and DNA microarray data, potential cell cycle-related genes were detected in budding yeast. This integrative method significantly improves the reliability of identifying co-functional gene pairs. In addition, the reconstructed network sheds light on both the function of known and predicted genes in the cell cycle process. Finally, our strategy can be applied to other biological processes and species, given the availability of relevant data.

摘要

背景

细胞功能依赖于遗传、物理及其他类型的相互作用。因此,由此衍生的相互作用网络可用于发现参与特定生物学过程的新基因。上位性微阵列分析(Epistatic Miniarray Profile,简称E-MAP)是一种在全基因组范围内测量遗传相互作用的实验平台,已成功恢复了酿酒酵母(芽殖酵母)中的已知通路并揭示了新的蛋白质复合物。

结果

通过将E-MAP数据与共表达数据相结合,我们首先预测了一个潜在的细胞周期相关基因集。以基因本体论(Gene Ontology,简称GO)功能注释为基准,我们证明,与单独使用任何一种数据源进行预测相比,结合微阵列和E-MAP数据进行的预测在识别共功能基因对方面的准确性通常高出50%以上。我们还使用转录因子(TF)-DNA结合数据(芯片杂交)和蛋白质磷酸化数据,基于我们预测的潜在细胞周期相关基因集构建了一个局部细胞周期调控网络。最后,基于对跨越1536个文库菌株的48个细胞周期基因进行的E-MAP筛选,我们预测了四个未知基因(YPL158C、YPR174C、YJR054W和YPR045C)为潜在的细胞周期基因,并对其进行了详细分析。

结论

通过整合E-MAP和DNA微阵列数据,在芽殖酵母中检测到了潜在的细胞周期相关基因。这种整合方法显著提高了识别共功能基因对的可靠性。此外,重建的网络揭示了已知和预测基因在细胞周期过程中的功能。最后,鉴于相关数据的可用性,我们的策略可应用于其他生物学过程和物种。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a12/3121125/9ff6cae11cea/1752-0509-5-S1-S9-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验