Faculty of Biology, University of Athens, Panepistimiopolis, Athens, Greece.
PLoS One. 2012;7(7):e41939. doi: 10.1371/journal.pone.0041939. Epub 2012 Jul 25.
Using the crystal structure of the uracil transporter UraA of Escherichia coli, we constructed a 3D model of the Aspergillus nidulans uric acid-xanthine/H(+) symporter UapA, which is a prototype member of the Nucleobase-Ascorbate Transporter (NAT) family. The model consists of 14 transmembrane segments (TMSs) divided into a core and a gate domain, the later being distinctly different from that of UraA. By implementing Molecular Mechanics (MM) simulations and quantitative structure-activity relationship (SAR) approaches, we propose a model for the xanthine-UapA complex where the substrate binding site is formed by the polar side chains of residues E356 (TMS8) and Q408 (TMS10) and the backbones of A407 (TMS10) and F155 (TMS3). In addition, our model shows several polar interactions between TMS1-TMS10, TMS1-TMS3, TMS8-TMS10, which seem critical for UapA transport activity. Using extensive docking calculations we identify a cytoplasm-facing substrate trajectory (D360, A363, G411, T416, R417, V463 and A469) connecting the proposed substrate binding site with the cytoplasm, as well as, a possible outward-facing gate leading towards the substrate major binding site. Most importantly, re-evaluation of the plethora of available and analysis of a number of herein constructed UapA mutations strongly supports the UapA structural model. Furthermore, modeling and docking approaches with mammalian NAT homologues provided a molecular rationale on how specificity in this family of carriers might be determined, and further support the importance of selectivity gates acting independently from the major central substrate binding site.
利用大肠杆菌尿嘧啶转运蛋白 UraA 的晶体结构,我们构建了 Aspergillus nidulans 尿酸-黄嘌呤/H(+) 同转运蛋白 UapA 的 3D 模型,该蛋白是核苷酸碱基-抗坏血酸转运蛋白(NAT)家族的原型成员。该模型由 14 个跨膜片段(TMS)组成,分为核心和门域,后者与 UraA 明显不同。通过实施分子力学(MM)模拟和定量构效关系(SAR)方法,我们提出了黄嘌呤-UapA 复合物的模型,其中底物结合位点由残基 E356(TMS8)和 Q408(TMS10)的极性侧链以及 A407(TMS10)和 F155(TMS3)的骨架形成。此外,我们的模型还显示了 TMS1-TMS10、TMS1-TMS3、TMS8-TMS10 之间的几个极性相互作用,这些相互作用似乎对 UapA 的转运活性至关重要。通过广泛的对接计算,我们确定了一条面向细胞质的底物轨迹(D360、A363、G411、T416、R417、V463 和 A469),将提出的底物结合位点与细胞质连接起来,以及一个可能的向外的门通向底物的主要结合位点。最重要的是,对大量现有数据的重新评估和对一些本文构建的 UapA 突变体的分析强烈支持了 UapA 的结构模型。此外,与哺乳动物 NAT 同源物的建模和对接方法提供了一个分子基础,说明这个载体家族的特异性如何确定,并进一步支持独立于主要中央底物结合位点的选择性门的重要性。